The main focus of this year's Proceedings of the 53rd Course of the International School of Subnuclear Physics is the future of physics, including the new frontiers in other fields.
In this thesis, the author develops new high-power millimeter wave techniques for measuring the hyperfine structure of positronium (Ps-HFS) directly for the first time in the world. Indirect measurement of Ps-HFS in the literature might have systematic uncertainties related to the use of a static magnetic field. Development of the millimeter wave devices supports the precise determination of Ps-HFS by directly measuring the Breit-Wigner resonant transition from o-Ps to p-Ps without the magnetic field. At the same time, the width of the measured Breit-Wigner resonance directly provides the lifetime of p-Ps. This measurement is the first precise spectroscopic experiment involving the magnetic dipole transition and high-power millimeter waves. The development of a gyrotron and a Fabry-Pérot cavity is described as providing an effective power of over 20 kW, which is required to cause the direct transition from o-Ps to p-Ps. Those values measured by the newly developed millimeter wave device pave the way for examining the discrepancy observed between conventional indirect experiments on Ps-HFS and the theoretical predictions of Quantum Electrodynamics.
Lincoln, a senior scientist at Fermi National Accelerator Laboratory and adjunct professor of physics at Notre Dame, gives readers an insider's view of the Hadron Collider from its conception, through its early discoveries and difficulties, to its greatest triumph, the discovery of the Higgs boson.
Discover the engineering and science behind particle accelerators, the massive machines that smash the smallest atoms together to observe how they work.
When the discovery of the Higgs Boson at CERN hit the headlines in 2012, the world was stunned by this achievement of modern science. Less well appreciated, however, were the many ways in which this benefited wider society.The Large Hadron Collider — The Greatest Adventure in Town charts a path through the cultural, economic and medical gains of modern particle physics. It illustrates these messages through the ATLAS experiment at CERN, one of the two big experiments which found the Higgs particle. Moving clear of in-depth physics analysis, it draws on the unparalleled curiosity about particle physics aroused by the Higgs discovery, and relates it to developments familiar in the modern world, including the Internet, its successor 'The Grid', and the latest cancer treatments.In this book, advances made from developing the 27 kilometre particle accelerator and its detectors are presented with the benefit of first hand interviews and are extensively illustrated throughout. Interviewees are leading physicists including successive heads of ATLAS, a top historian of science, a highly original economic strategist, a Nobel Prize-winning geneticist and President of the Royal Society in London, and experts in many other fields. These informative and entertaining insights provide both specialists and non-specialists alike with a unique window into the world of modern international research and its often surprising consequences, as exemplified by the ATLAS experiment. The narrative reveals the extent and style of international collaboration necessary to achieve success, and how big companies as well as start-ups enhance their products in the process.
Describes the technology and engineering of the Large Hadron collider (LHC), one of the greatest scientific marvels of this young 21st century. This book traces the feat of its construction, written by the head scientists involved, placed into the context of the scientific goals and principles.
This volume presents a set of pedagogical lectures that introduce particle physics beyond the standard model and particle cosmology to advanced graduate students.
NAMED A BEST SCIENCE BOOK OF 2021 BY KIRKUS * An acclaimed experimental physicist at CERN takes you on an exhilarating search for the most basic building blocks of our universe, and the dramatic quest to unlock their cosmic origins. "A fascinating exploration of how we learned what matter really is, and the journey matter takes from the Big Bang, through exploding stars, ultimately to you and me." (Sean Carroll) Carl Sagan once quipped, “If you wish to make an apple pie from scratch, you must first invent the universe.” But finding the ultimate recipe for apple pie means answering some big questions: What is matter really made of? How did it escape annihilation in the fearsome heat of the Big Bang? And will we ever be able to understand the very first moments of our universe? In How to Make an Apple Pie from Scratch, Harry Cliff—a University of Cambridge particle physicist and researcher on the Large Hadron Collider—sets out in pursuit of answers. He ventures to the largest underground research facility in the world, deep beneath Italy's Gran Sasso mountains, where scientists gaze into the heart of the Sun using the most elusive of particles, the ghostly neutrino. He visits CERN in Switzerland to explore the "Antimatter Factory," where the stuff of science fiction is manufactured daily (and we're close to knowing whether it falls up). And he reveals what the latest data from the Large Hadron Collider may be telling us about the fundamental nature of matter. Along the way, Cliff illuminates the history of physics, chemistry, and astronomy that brought us to our present understanding—and misunderstandings—of the world, while offering readers a front-row seat to one of the most dramatic intellectual journeys human beings have ever embarked on. A transfixing deep dive into the origins of our world, How to Make an Apple Pie from Scratch examines not just the makeup of our universe, but the awe-inspiring, improbable fact that it exists at all.
It may at first seem that the world of subatomic physics is far removed from our every day lives. Isn’t it all just a waste of time and taxpayers' money? Hopefully, all who read this book will come to a different conclusion. Collider physics is all about our origins, and this aspect alone makes it worthy of our very best attention. The experiments conducted within the vast collider chambers are at the forefront of humanity’s quest to unweave the great tapestry that is the universe. Everything is connected. Within the macrocosm is the microcosm. By knowing how matter is structured, how atoms and elementary particles interact, and what forces control the interactions between the particles, we discover further clues as to why the universe is the way it is, and we uncover glimpses of how everything came into being. The Large Hadron Collider (LHC), in the process of coming online at CERN, is the world’s largest and most complex machine. It represents the pinnacle of human ingenuity, and its physical characteristics, costs, and workings astound us at every turn. We are literally humbled by the machine that has been produced through a grand international collaboration of scientists. This book is about what those scientists hope to discover with the LHC, for hopes do run high, and there is much at stake. Careers, reputations and prestigious science prizes will be realized, and possibly lost, in the wake of the results that the LHC will produce. And there are risks, real and imagined. The LHC will probe the very fabric of matter and it will help us understand the very weft and the weave of the universe.
Written by authors working at the forefront of research, this accessible treatment presents the current status of the field of collider-based particle physics at the highest energies available, as well as recent results and experimental techniques. It is clearly divided into three sections; The first covers the physics -- discussing the various aspects of the Standard Model as well as its extensions, explaining important experimental results and highlighting the expectations from the Large Hadron Collider (LHC). The second is dedicated to the involved technologies and detector concepts, and the third covers the important - but often neglected - topics of the organisation and financing of high-energy physics research. A useful resource for students and researchers from high-energy physics.