This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
This is the first thorough examination of weakly nonlocal solitary waves, which are just as important in applications as their classical counterparts. The book describes a class of waves that radiate away from the core of the disturbance but are nevertheless very long-lived nonlinear disturbances.
A survey of asymptotic methods in fluid mechanics and applications is given including high Reynolds number flows (interacting boundary layers, marginal separation, turbulence asymptotics) and low Reynolds number flows as an example of hybrid methods, waves as an example of exponential asymptotics and multiple scales methods in meteorology.
This book is the first comprehensive introduction to the theory of equatorially-confined waves and currents in the ocean. Among the topics treated are inertial and shear instabilities, wave generation by coastal reflection, semiannual and annual cycles in the tropic sea, transient equatorial waves, vertically-propagating beams, equatorial Ekman layers, the Yoshida jet model, generation of coastal Kelvin waves from equatorial waves by reflection, Rossby solitary waves, and Kelvin frontogenesis. A series of appendices on midlatitude theories for waves, jets and wave reflections add further material to assist the reader in understanding the differences between the same phenomenon in the equatorial zone versus higher latitudes.
An asymptotic expansion is a series that provides a sequence of increasingly accurate approximations to a function in a particular limit. The formal definition, given by Poincare (1886, Acta Math. 8:295), is as follows. Given a function,
Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
This book is part of a two volume set which presents the analysis of nonlinear phenomena as a long-standing challenge for research in basic and applied science as well as engineering. It discusses nonlinear differential and differential equations, bifurcation theory for periodic orbits and global connections. The integrability and reversibility of planar vector fields and theoretical analysis of classic physical models are sketched. This first volume concentrates on the mathematical theory and computational techniques that are essential for the study of nonlinear science, a second volume deals with real-world nonlinear phenomena in condensed matter, biology and optics.
The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Aerospace Engineering, and the Office of International Studies (of the University of Central Florida) for the financial support of the conference. Also, to the Mathematics Department of the University of Central Florida for providing secretarial and administrative assistance. I would like to thank the members of the local organizing committee, Jeanne Blank, Jackie Callahan, John Cannon, Holly Carley, Brad Pyle, Pete Rautenstrauch, and June Wingler for their assistance. Thanks are also due to the conference organizing committee, F. H. Busse, J. R. Cannon, V. Girault, R. H. J. Grimshaw, P. N. Kaloni, V.
Asymptotic Methods for Engineers is based on the authors’ many years of practical experience in the application of asymptotic methods to solve engineering problems. This book is devoted to modern asymptotic methods (AM), which is widely used in engineering, applied sciences, physics, and applied mathematics. Avoiding complex formal calculations and justifications, the book’s main goal is to describe the main ideas and algorithms. Moreover, not only is there a presentation of the main AM, but there is also a focus on demonstrating their unity and inseparable connection with the methods of summation and asymptotic interpolation. The book will be useful for students and researchers from applied mathematics and physics and of interest to doctoral and graduate students, university and industry professors from various branches of engineering (mechanical, civil, electro-mechanical, etc.).