Wave Propagation and Scattering in Random Media

Wave Propagation and Scattering in Random Media

Author: Akira Ishimaru

Publisher: Elsevier

Published: 2013-06-11

Total Pages: 272

ISBN-13: 0323158323

DOWNLOAD EBOOK

Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.


Wave Propagation in a Random Medium

Wave Propagation in a Random Medium

Author: Lev A. Chernov

Publisher: Courier Dover Publications

Published: 2017-05-17

Total Pages: 179

ISBN-13: 0486821471

DOWNLOAD EBOOK

Ground-breaking contribution to the literature, widely used by scientists, engineers, and students. Topics include theory of wave propagation in randomly inhomogeneous media, ray and wave theories of scattering at random inhomogeneities, more. 1960 edition.


The Topology of 4-Manifolds

The Topology of 4-Manifolds

Author: Robion C. Kirby

Publisher: Springer

Published: 2006-11-14

Total Pages: 114

ISBN-13: 354046171X

DOWNLOAD EBOOK

This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.


Laser Beam Propagation Through Random Media

Laser Beam Propagation Through Random Media

Author: Larry C. Andrews

Publisher: SPIE-International Society for Optical Engineering

Published: 2005

Total Pages: 820

ISBN-13:

DOWNLOAD EBOOK

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.


Wave Propagation and Time Reversal in Randomly Layered Media

Wave Propagation and Time Reversal in Randomly Layered Media

Author: Jean-Pierre Fouque

Publisher: Springer Science & Business Media

Published: 2007-06-30

Total Pages: 623

ISBN-13: 0387498087

DOWNLOAD EBOOK

The content of this book is multidisciplinary by nature. It uses mathematical tools from the theories of probability and stochastic processes, partial differential equations, and asymptotic analysis, combined with the physics of wave propagation and modeling of time reversal experiments. It is addressed to a wide audience of graduate students and researchers interested in the intriguing phenomena related to waves propagating in random media. At the end of each chapter there is a section of notes where the authors give references and additional comments on the various results presented in the chapter.


Wave Propagation in Complex Media

Wave Propagation in Complex Media

Author: George Papanicolaou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 301

ISBN-13: 1461216788

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications WAVE PROPAGATION IN COMPLEX MEDIA is based on the proceedings of two workshops: • Wavelets, multigrid and other fast algorithms (multipole, FFT) and their use in wave propagation and • Waves in random and other complex media. Both workshops were integral parts of the 1994-1995 IMA program on "Waves and Scattering." We would like to thank Gregory Beylkin, Robert Burridge, Ingrid Daubechies, Leonid Pastur, and George Papanicolaou for their excellent work as organizers of these meetings. We also take this opportunity to thank the National Science Foun dation (NSF), the Army Research Office (ARO, and the Office of Naval Research (ONR), whose financial support made these workshops possible. A vner Friedman Robert Gulliver v PREFACE During the last few years the numerical techniques for the solution of elliptic problems, in potential theory for example, have been drastically improved. Several so-called fast methods have been developed which re duce the required computing time many orders of magnitude over that of classical algorithms. The new methods include multigrid, fast Fourier transforms, multi pole methods and wavelet techniques. Wavelets have re cently been developed into a very useful tool in signal processing, the solu tion of integral equation, etc. Wavelet techniques should be quite useful in many wave propagation problems, especially in inhomogeneous and nonlin ear media where special features of the solution such as singularities might be tracked efficiently.


Scattering and Localization of Classical Waves in Random Media

Scattering and Localization of Classical Waves in Random Media

Author: Ping Sheng

Publisher: World Scientific

Published: 1990

Total Pages: 660

ISBN-13: 9789971505394

DOWNLOAD EBOOK

The past decade has witnessed breakthroughs in the understanding of the wave localization phenomena and its implications for wave multiple scattering in inhomogeneous media. This book brings together review articles written by noted researchers in this field in a tutorial manner so as to give the readers a coherent picture of its status. It would be valuable both as an up-to-date reference for active researchers as well as a readable source for students looking to gain an understanding of the latest results.


Random Media

Random Media

Author: George Papanicolaou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 322

ISBN-13: 1461387256

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications RANDOM MEDIA represents the proceedings of a workshop which was an integral part of the 1984-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: Daniel Stroock (Chairman) \~ende 11 Fl emi ng Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We especi ally thank George Papani col aOIJ for organi zi ng a workshop which produced fruitful interactions between mathematicians and scientists from both academia and industry. George R. Sell Hans I~ei nherger PREFACE During September 1985 a workshop on random media was held at the Institute for Mathematics and its Applications at the University of Minnesota. This was part of the program for the year on Probability and Stochastic Processes at IMA. The main objective of the workshop was to bring together researchers who work in a broad area including applications and mathematical methodology. The papers in this volume give an idea of what went on and they also represent a cross section of problems and methods that are currently of interest.