Wave Propagation Approach for Structural Vibration

Wave Propagation Approach for Structural Vibration

Author: Chongjian Wu

Publisher: Springer Nature

Published: 2020-10-28

Total Pages: 288

ISBN-13: 9811572372

DOWNLOAD EBOOK

This book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control. Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at “discontinuity points,” and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two “discontinuity points,” the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained. Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.


Wave Propagation in Structures

Wave Propagation in Structures

Author: James F. Doyle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 266

ISBN-13: 1468403443

DOWNLOAD EBOOK

The study of wave propagation seems very remote to many engineers, even to those who are involved in structural dynamics. I think one of the reasons for this is that the examples usually taught in school were either so simple as to be inapplicable to real world problems, or so mathematically abstruse as to be intractable. This book contains an approach, spectral analysis, that I have found to be very effective in analyzing waves. What has struck me most about this approach is how I can use the same analytic framework to do predictions as well as to manipulate experimental data. As an experimentalist, I had found it very frustrating having my analytical tools incompatible with my experiments. For example, it is experimentally impos sible to generate a step-function wave and yet that is the type of analytical solution available. Spectral analysis is very encompassing - it touches on analysis, numerical meth ods, and experimental methods. I wanted this book to do justice to its versatility, so many subjects are introduced. As a result some areas may seem a little thin and I regret this. But I do hope, nonetheless, that the bigger picture, the unity, comes across. To encourage you to try the spectral analysis approach I have included complete source code listings to some of the computer programs mentioned in the text.


Wave Propagation Approach for Structural Vibration

Wave Propagation Approach for Structural Vibration

Author: Chongjian Wu

Publisher:

Published: 2021

Total Pages: 0

ISBN-13: 9789811572388

DOWNLOAD EBOOK

This book is intended for researchers, graduate students and engineers in the fields of structure-borne sound, structural dynamics, and noise and vibration control. Based on vibration differential equations, it presents equations derived from the exponential function in the time domain, providing a unified framework for structural vibration analysis, which makes it more regular and normalized. This wave propagation approach (WPA) divides structures at "discontinuity points," and the waves show characteristics of propagation, reflection, attenuation, and waveform conversion. In each segment of the system between two "discontinuity points," the governing equation and constraint are expressed accurately, allowing the dynamic properties of complex systems to be precisely obtained. Starting with basic structures such as beams and plates, the book then discusses theoretical research on complicated and hybrid dynamical systems, and demonstrates that structural vibration can be analyzed from the perspective of elastic waves by applying WPA.


Wave Propagation for Train-induced Vibrations

Wave Propagation for Train-induced Vibrations

Author: Yeong-Bin Yang

Publisher: World Scientific

Published: 2009

Total Pages: 490

ISBN-13: 9812835830

DOWNLOAD EBOOK

For buildings and factories located near railway or subway lines, the vibrations caused by the moving trains, especially at high speeds, may be annoying to the residents or detrimental to the high-precision production lines. However, there is a lack of simple and efficient tools for dealing with the kind of environmental vibrations, concerning simulation of the radiation of infinite boundaries; irregularities in soils, buildings and wave barriers; and dynamic properties of the moving vehicles. This book is intended to fill such a gap.


Guided Waves in Structures for SHM

Guided Waves in Structures for SHM

Author: Wieslaw Ostachowicz

Publisher: John Wiley & Sons

Published: 2011-12-30

Total Pages: 267

ISBN-13: 1119966744

DOWNLOAD EBOOK

Understanding and analysing the complex phenomena related to elastic wave propagation has been the subject of intense research for many years and has enabled application in numerous fields of technology, including structural health monitoring (SHM). In the course of the rapid advancement of diagnostic methods utilising elastic wave propagation, it has become clear that existing methods of elastic wave modeling and analysis are not always very useful; developing numerical methods aimed at modeling and analysing these phenomena has become a necessity. Furthermore, any methods developed need to be verified experimentally, which has become achievable with the advancement of measurement methods utilising laser vibrometry. Guided Waves in Structures for SHM reports on the simulation, analysis and experimental investigation related propagation of elastic waves in isotropic or laminated structures. The full spectrum of theoretical and practical issues associated with propagation of elastic waves is presented and discussed in this one study. Key features: Covers both numerical and experimental aspects of modeling, analysis and measurement of elastic wave propagation in structural elements formed from isotropic or composite materials Comprehensively discusses the application of the Spectral Finite Element Method for modelling and analysing elastic wave propagation in diverse structural elements Presents results of experimental measurements employing advanced laser technologies, validating the quality and correctness of the developed numerical models Accompanying website (www.wiley.com/go/ostachowicz) contains demonstration versions of commercial software developed by the authors for modelling and analyzing elastic wave propagation using the Spectral Finite Element Method Guided Waves in Structures for SHM provides a state of the art resource for researchers and graduate students in structural health monitoring, signal processing and structural dynamics. This book should also provide a useful reference for practising engineers within structural health monitoring and non-destructive testing.


Wave Propagation in Structures

Wave Propagation in Structures

Author: James F. Doyle

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 335

ISBN-13: 1461218322

DOWNLOAD EBOOK

This book introduces spectral analysis as a means of investigating wave propagation and transient oscillations in structures. After developing the foundations of spectral analysis and the fast Fourier transform algorithm, the book provides a thorough treatment of waves in rods, beams, and plates, and introduces a novel matrix method for analysing complex structures as a collection of waveguides. The presentation includes an introduction to higher-order structural theories, the results of many experimental studies, practical applications, and source-code listings for many programs. An extensive bibliography provides an entry to the research literature. Intended as a textbook for graduate students of aerospace or mechanical engineering, the book will also be of interest to practising engineers in these and related disciplines.


Wave Propagation in Linear and Nonlinear Periodic Media

Wave Propagation in Linear and Nonlinear Periodic Media

Author: Francesco Romeo

Publisher: Springer Science & Business Media

Published: 2013-07-30

Total Pages: 332

ISBN-13: 3709113091

DOWNLOAD EBOOK

Waves and defect modes in structures media.- Piezoelectric superlattices and shunted periodic arrays as tunable periodic structures and metamaterials.- Topology optimization.- Map-based approaches for periodic structures.- Methodologies for nonlinear periodic media.​ The contributions in this volume present both the theoretical background and an overview of the state-of-the art in wave propagation in linear and nonlinear periodic media in a consistent format. They combine the material issued from a variety of engineering applications, spanning a wide range of length scale, characterized by structures and materials, both man-made and naturally occurring, featuring geometry, micro-structural and/or materials properties that vary periodically in space, including periodically stiffened plates, shells and beam-like as well as bladed disc assemblies, phononic metamaterials, photonic crystals and ordered granular media. Along with linear models and applications, analytical methodologies for analyzing and exploiting complex dynamical phenomena arising in nonlinear periodic systems are also presented.​


Wave 2002: Wave Propagation - Moving Load - Vibration Reduction

Wave 2002: Wave Propagation - Moving Load - Vibration Reduction

Author: Nawawi Chouw

Publisher: CRC Press

Published: 2021-07-29

Total Pages: 409

ISBN-13: 1000446794

DOWNLOAD EBOOK

Detailing the proceedings of the Wave 2002 workshop at Okayama University in Japan, this collection of eighteen peer-reviewed papers concerns the issue of the ground vibration and noise caused by construction activities, explosions in the ground, or high-speed trains. Providing key information for engineers, researchers, scientists, practitioners, teachers and students working in the field of structural dynamics or soil dynamics, this text also includes a useful address list in the appendix to enable readers to gather further information if required.


Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure

Small-scale Computational Vibration of Carbon Nanotubes: Composite Structure

Author: Muzamal Hussain

Publisher: CRC Press

Published: 2024-08-09

Total Pages: 174

ISBN-13: 1003823408

DOWNLOAD EBOOK

This book presents orthotropic vibration modeling and analysis of carbon nanotubes (CNTs) which be helpful in applications such as oscillators and in non-destructive testing, and also vibrations characteristics of armchair double-walled CNT by means of nonlocal elasticity shell model. The nonlocal shell model is established by inferring the nonlocal elasticity equations in to Kelvin’s theory, which is our particular motivation. The suggested method to investigate the solution of fundamental Eigen relations is wave propagation, which is a well-known and efficient technique to develop the fundamental frequency equations. The frequencies of three different types of SWCNTs are calculated. Also, the vibrations of the chiral single-walled carbon nanotube (SWCNTs) with non-local theory using wave propagation approach is investigated. It has been investigated that by increasing the nonlocal parameter decreases the frequencies and on increasing the aspect ratio increases the frequencies throughout the computation frequencies of clamped-free lower than that of clamped-clamped. Carbon nanotubes have a variety of applications because of their distinctive molecular structure and show unique electronic and mechanical properties because of their curvature. Nanotubes and micro-beams can be cited as one of the very applicable micro- and nano-structures in various systems, namely, sensing devices, communications and the quantum mechanics. The application of the tiny structures, specifically, carbon nanotubes in the sensors and actuators enforce the engineers to study vibrational properties of those structures experimentally and theoretically. In addition, they are utilized in different fields such as bioengineering, tissue engineering, computer engineering, optics, energy and environmental systems.


Structural Dynamics

Structural Dynamics

Author: Madhujit Mukhopadhyay

Publisher: Springer Nature

Published: 2021-04-15

Total Pages: 628

ISBN-13: 303069674X

DOWNLOAD EBOOK

This book introduces the theory of structural dynamics, with focus on civil engineering structures. It presents modern methods of analysis and techniques adaptable to computer programming clearly and easily. The book is ideal as a text for advanced undergraduates or graduate students taking a first course in structural dynamics. It is arranged in such a way that it can be used for a one- or two-semester course, or span the undergraduate and graduate levels. In addition, this book serves the practicing engineer as a primary reference. This book is organized by the type of structural modeling. The author simplifies the subject by presenting a single degree-of-freedom system in the first chapters and then moves to systems with many degrees-of-freedom in the following chapters. Many worked examples/problems are presented to explain the text, and a few computer programs are presented to help better understand the concepts. The book is useful to the research scholars and professional engineers, besides senior undergraduate and postgraduate students.