Only book world-wide addressing this topic. The principal output of the European co-operative Action on "Water Movements in Road Pavements & Embankments". Provides unique guidance on assessing water condition and its affects on road performance. Provides unique guidance on assessing and ameliorating contaminant movement in pavement groundwater. Written by leading experts in Europe.
Roads and water are generally seen as enemies, with water responsible for most of the damage to roads, and roads being a major cause of problems such as erosion, waterlogging, flooding, and dust storms. This tension, however, can be reversed. The concept of Green Roads for Water (also known as “Green Roads†? or “roads for water†?) places roads in the service of water and landscape management and climate resilience without sacrificing or diminishing their transport functions. With global investment in roads of US$1†“US$2 trillion per year, plus maintenance costs, the widespread adoption of Green Roads approaches can leverage investment at a transformative scale, making road development and maintenance a vital tool for achieving climate resilience, water security, and productive use of natural resources. Green Roads for Water: Guidelines for Road Infrastructure in Support of Water Management and Climate Resilience provides strategies to use roads for beneficial water management tailored to diverse landscapes and climates, including watershed areas, semiarid climates, coastal lowlands, mountainous areas, and floodplains. The underlying premise of Green Roads is therefore quite simple: designing roads to fit their natural and anthropomorphic contexts; minimize externalities; and balance preservation of the road, water resources, landscape, and soil resources will usually cost less than traditional protective resilience approaches and will produce more sustainable overall outcomes.
At first glance, roads seem like the simplest possible geotechnical structures. However, analysis of these structures runs up against complexities related to the intense stresses experienced by road surfaces, their intense interaction with climate, and the complicated behavior of the materials used in road construction. Modern mechanistic approaches to road design provide the tools capable of developing new technical solutions. However, use of these approaches requires deep understanding of the behavior of constituent materials and their interaction with water and heat which has recently been acquired thanks to advances in geotechnical engineering. The author comprehensively describes and explains these advances and their use in road engineering in the two-volume set Geotechnics of Roads, compiling information that had hitherto only been available in numerous research papers. Geotechnics of Roads: Fundamentals presents stresses and strains in road structures, water and heat migration within and between layers of road materials, and the effects of water on the strength and stiffness of those materials. It includes a deep analysis of soil compaction, one of the most important issues in road construction. Compaction accounts for only a small proportion of a construction budget but its effects on the long-term performance of a road are decisive. In addition, the book describes methodologies for nondestructive road evaluation including analysis of continuous compaction control, a powerful technique for real-time quality control of road structures. Geotechnics of Roads: Advanced Analysis and Modeling develops 23 extended examples that cover most of the theoretical aspects presented in the book Geotechnics of Roads, Fundamentals. Moreover, for most examples, Volume 2 describes algorithms for solving complex problems and provides Matlab® scripts for their solution. Consequently, Volume 2 is a natural complement of the book Geotechnics of roads: Fundamentals. This unique set will be of value to civil, structural and geotechnical engineers worldwide.
At first glance, roads seem like the simplest possible geotechnical structures. However, analysis of these structures runs up against complexities related to the intense stresses experienced by road surfaces, their intense interaction with climate, and the complicated behavior of the materials used in road construction. Modern mechanistic approaches to road design provide the tools capable of developing new technical solutions. However, use of these approaches requires deep understanding of the behavior of constituent materials and their interaction with water and heat which has recently been acquired thanks to advances in geotechnical engineering. The author comprehensively describes and explains these advances and their use in road engineering in the two-volume set Geotechnics of Roads, compiling information that had hitherto only been available in numerous research papers. Geotechnics of Roads: Fundamentals presents stresses and strains in road structures, water and heat migration within and between layers of road materials, and the effects of water on the strength and stiffness of those materials. It includes a deep analysis of soil compaction, one of the most important issues in road construction. Compaction accounts for only a small proportion of a construction budget but its effects on the long-term performance of a road are decisive. In addition, the book describes methodologies for nondestructive road evaluation including analysis of continuous compaction control, a powerful technique for real-time quality control of road structures. This unique book will be of value to civil, structural and geotechnical engineers worldwide.
At first glance, roads seem like the simplest possible geotechnical structures. However, analysis of these structures runs up against complexities related to the intense stresses experienced by road surfaces, their intense interaction with climate, and the complicated behavior of the materials used in road construction. Modern mechanistic approaches to road design provide the tools capable of developing new technical solutions. However, use of these approaches requires deep understanding of the behavior of constituent materials and their interaction with water and heat which has recently been acquired thanks to advances in geotechnical engineering. The author comprehensively describes and explains these advances and their use in road engineering in the two-volume set Geotechnics of Roads, compiling information that had hitherto only been available in numerous research papers. Geotechnics of Roads: Advanced Analysis and Modeling develops 23 extended examples that cover most of the theoretical aspects presented in the book Geotechnics of Roads: Fundamentals. Moreover, for most examples, Volume 2 describes algorithms for solving complex problems and provides Matlab® scripts for their solution. Consequently, Volume 2 is a natural complement of the book Geotechnics of Roads: Fundamentals. This unique book will be of value to civil, structural and geotechnical engineers worldwide.
Rural Road Engineering in Developing Countries provides a comprehensive coverage of the planning, design, construction, and maintenance of rural roads in developing countries and emerging nations. It covers a wide range of technical and non-technical problems that may confront road engineers working in the developing world, focusing on rural roads which provide important links from villages and farms to markets and offer the public access to health, education, and other services essential for sustainable development. Most textbooks on road engineering are based on experience in industrialised countries with temperate climates or deal only with specific issues, with many aspects of the design and construction of roads in developing regions stemming from inappropriate research undertaken in Europe and the USA. These approaches are frequently unsuitable and unsustainable for rural road network environments, particularly in low to middle income countries. This book takes on board a more recent research and application focus on rural roads, integrating it for a broad range of readers to access current information on good practice for sustainable road engineering in developing countries. The book particularly suits transportation engineers, development professionals, and graduate students in civil engineering.
The purpose of this manual is to provide clear and helpful information for maintaining gravel roads. Very little technical help is available to small agencies that are responsible for managing these roads. Gravel road maintenance has traditionally been "more of an art than a science" and very few formal standards exist. This manual contains guidelines to help answer the questions that arise concerning gravel road maintenance such as: What is enough surface crown? What is too much? What causes corrugation? The information is as nontechnical as possible without sacrificing clear guidelines and instructions on how to do the job right.