VLSI Micro- and Nanophotonics

VLSI Micro- and Nanophotonics

Author: El-Hang Lee

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 632

ISBN-13: 142001790X

DOWNLOAD EBOOK

Addressing the growing demand for larger capacity in information technology, VLSI Micro- and Nanophotonics: Science, Technology, and Applications explores issues of science and technology of micro/nano-scale photonics and integration for broad-scale and chip-scale Very Large Scale Integration photonics. This book is a game-changer in the sense that it is quite possibly the first to focus on "VLSI Photonics". Very little effort has been made to develop integration technologies for micro/nanoscale photonic devices and applications, so this reference is an important and necessary early-stage perspective on this field. New demand for VLSI photonics brings into play various technological and scientific issues, as well as evolutionary and revolutionary challenges—all of which are discussed in this book. These include topics such as miniaturization, interconnection, and integration of photonic devices at micron, submicron, and nanometer scales. With its "disruptive creativity" and unparalleled coverage of the photonics revolution in information technology, this book should greatly impact the future of micro/nano-photonics and IT as a whole. It offers a comprehensive overview of the science and engineering of micro/nanophotonics and photonic integration. Many books on micro/nanophotonics focus on understanding the properties of individual devices and their related characteristics. However, this book offers a full perspective from the point of view of integration, covering all aspects of benefits and advantages of VLSI-scale photonic integration—the key technical concept in developing a platform to make individual devices and components useful and practical for various applications.


Micro and Nanophotonics for Semiconductor Infrared Detectors

Micro and Nanophotonics for Semiconductor Infrared Detectors

Author: Zoran Jakšić

Publisher: Springer

Published: 2014-09-25

Total Pages: 274

ISBN-13: 3319096745

DOWNLOAD EBOOK

The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of plasmonics appeared, dedicated to the manipulation with evanescent, surface-bound electromagnetic waves and offering an opportunity to merge nanoelectronics with all-optical circuitry. In the field of infrared technologies MEMS and nanotechnologies ensured the appearance of a new generation of silicon-based thermal detectors with properties vastly surpassing the conventional thermal devices. However, another family of infrared detectors, photonic devices based on narrow-bandgap semiconductors, has traditionally been superior to thermal detectors. Literature about their micro and nanophotonic enhancement has been scarce and scattered through journals. This book offers the first systematic approach to numerous different MEMS and nanotechnology-based methods available for the improvement of photonic infrared detectors and points out to a path towards uncooled operation with the performance of cryogenically cooled devices. It is shown that a vast area for enhancement does exists and that photonic devices can readily keep their leading position in infrared detection. The various methods and approaches described in the book are also directly applicable to different other types of photodetectors like solar cells, often with little or no modification.


Optical Processes in Microparticles and Nanostructures

Optical Processes in Microparticles and Nanostructures

Author: Ali Serpenguzel

Publisher: World Scientific

Published: 2011

Total Pages: 486

ISBN-13: 9814295779

DOWNLOAD EBOOK

This Festschrift is a tribute to the eminent scholar, Professor Richard Kounai Chang, on his retirement from Yale University on June 12, 2008. During his over four decades of scientific exploration, Professor Chang has made a lasting contribution to the development of linear and nonlinear optics and devices in confined geometries, of surface second-harmonic generation and surface-enhanced Raman scattering, and of novel methods for detecting airborne aerosol pathogens. This volume assembles a collection of articles contributed by former students, collaborators, and colleagues of Professor Chang all over the world. The topics span a diverse scope in applied optics frontiers, many of which are rooted in Professor Chang's pioneering research.


Nano Optoelectronic Sensors and Devices

Nano Optoelectronic Sensors and Devices

Author: Ning Xi

Publisher: William Andrew

Published: 2011-11-29

Total Pages: 273

ISBN-13: 1437734715

DOWNLOAD EBOOK

Nanophotonics has emerged as a major technology and applications domain, exploiting the interaction of light-emitting and light-sensing nanostructured materials. These devices are lightweight, highly efficient, low on power consumption, and are cost effective to produce. The authors of this book have been involved in pioneering work in manufacturing photonic devices from carbon nanotube (CNT) nanowires and provide a series of practical guidelines for their design and manufacture, using processes such as nano-robotic manipulation and assembly methods. They also introduce the design and operational principles of opto-electrical sensing devices at the nano scale. Thermal annealing and packaging processes are also covered, as key elements in a scalable manufacturing process. Examples of applications of different nanowire based photonic devices are presented. These include applications in the fields of electronics (e.g. FET, CNT Schotty diode) and solar energy. Discusses opto-electronic nanomaterials, characterization and properties from an engineering perspective, enabling the commercialization of key emerging technologies Provides scalable techniques for nanowire structure growth, manipulation and assembly (i.e. synthesis) Explores key application areas such as sensing, electronics and solar energy


Integrated Optics: Theory and Applications

Integrated Optics: Theory and Applications

Author: Tadeusz Pustelny

Publisher: SPIE-International Society for Optical Engineering

Published: 2005

Total Pages: 446

ISBN-13:

DOWNLOAD EBOOK

Proceedings of SPIE present the original research papers presented at SPIE conferences and other high-quality conferences in the broad-ranging fields of optics and photonics. These books provide prompt access to the latest innovations in research and technology in their respective fields. Proceedings of SPIE are among the most cited references in patent literature.


Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer

Author: Zhuomin M. Zhang

Publisher: Springer Nature

Published: 2020-06-23

Total Pages: 780

ISBN-13: 3030450392

DOWNLOAD EBOOK

This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.


Frontiers in Surface Nanophotonics

Frontiers in Surface Nanophotonics

Author: David L. Andrews

Publisher: Springer Science & Business Media

Published: 2007-09-19

Total Pages: 179

ISBN-13: 0387489509

DOWNLOAD EBOOK

This book explores the role of surface effects in optical phenomena in nanoscience, from two different perspectives. When systems are reduced in volume, the ratio of surface versus volume increases. At the level of single nanostructures this translates into an enhanced role of interfacial chemistry and thermodynamics. At the level of systems of nanostructures, it translates into larger density on interfaces, which in turn leads to such intriguing collective effects as plasmonics or multiple reflection and refraction phenomena. The book highlights both perspectives presenting sample applications. Without claiming to be exhaustive, the book aims to stimulate readers in this potentially rewarding field.


Integrated Micro-Ring Photonics

Integrated Micro-Ring Photonics

Author: Iraj Sadegh Amiri

Publisher: CRC Press

Published: 2016-12-08

Total Pages: 164

ISBN-13: 131740484X

DOWNLOAD EBOOK

Micro-ring resonators (MRRs) are employed to generate signals used for optical communication applications, where they can be integrated in a single system. These structures are ideal candidates for very large-scale integrated (VLSI) photonic circuits, since they provide a wide range of optical signal processing functions while being ultra-compact. Soliton pulses have sufficient stability for preservation of their shape and velocity. Technological progress in fields such as tunable narrow band laser systems, multiple transmission, and MRR systems constitute a base for the development of new transmission techniques. Controlling the speed of a light signal has many potential applications in fiber optic communication and quantum computing. The slow light effect has many important applications and is a key technology for all optical networks such as optical signal processing. Generation of slow light in MRRs is based on the nonlinear optical fibers. Slow light can be generated within the micro-ring devices, which will be able to be used with the mobile telephone. Therefore, the message can be kept encrypted via quantum cryptography. Thus perfect security in a mobile telephone network is plausible. This research study involves both numerical experiments and theoretical work based on MRRs for secured communication.


Optical MEMS, Nanophotonics, and Their Applications

Optical MEMS, Nanophotonics, and Their Applications

Author: Guangya Zhou

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 447

ISBN-13: 1498741347

DOWNLOAD EBOOK

This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic elements into the nano regime for enhanced performance, faster operational speed, greater bandwidth, and higher level of integration. Showcases the integration of MEMS and optical/photonic devices into real commercial products. Addresses applications in optical telecommunication, sensing, imaging, and biomedical systems. Prof. Vincent C. Lee is Associate Professor in the Department of Electrical and Computer Engineering, National University of Singapore. Prof. Guangya Zhou is Associate Professor in the Department of Mechanical Engineering at National University of Singapore.