Vision Based Mobile Robotics: mobile robot localization using vision sensors and active probabilistic approaches

Vision Based Mobile Robotics: mobile robot localization using vision sensors and active probabilistic approaches

Author: Emanuele Frontoni

Publisher: Lulu.com

Published: 2012-01-22

Total Pages: 157

ISBN-13: 147106977X

DOWNLOAD EBOOK

The use of vision in mobile robotics in one of the main goal of this thesis. In particular novel appearance based approaches for image matching metric are introduced. These approaches are applied to the problem of mobile robot localization.Similarity measures between robot's views are used in probabilistic methods for robot pose estimation. In this field of probabilistic localization active approach are proposed allowing the robot to faster and better localize. All methods have been extensively tested using a real robot in an indoor environment.Note: the book is the publication of the PhD thesis discussed in Università Politecnica delle Marche, Ancona, Italy in 2006 by Emanuele Frontoni


Vision Based Autonomous Robot Navigation

Vision Based Autonomous Robot Navigation

Author: Amitava Chatterjee

Publisher: Springer

Published: 2012-10-13

Total Pages: 235

ISBN-13: 3642339654

DOWNLOAD EBOOK

This monograph is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book describes successful implementation of integration of low-cost, external peripherals, with off-the-shelf procured robots. An important highlight of the book is that it presents a detailed, step-by-step sample demonstration of how vision-based navigation modules can be actually implemented in real life, under 32-bit Windows environment. The book also discusses the concept of implementing vision based SLAM employing a two camera based system.


Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods

Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods

Author: Fernández-Madrigal, Juan-Antonio

Publisher: IGI Global

Published: 2012-09-30

Total Pages: 497

ISBN-13: 1466621052

DOWNLOAD EBOOK

As mobile robots become more common in general knowledge and practices, as opposed to simply in research labs, there is an increased need for the introduction and methods to Simultaneous Localization and Mapping (SLAM) and its techniques and concepts related to robotics. Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods investigates the complexities of the theory of probabilistic localization and mapping of mobile robots as well as providing the most current and concrete developments. This reference source aims to be useful for practitioners, graduate and postgraduate students, and active researchers alike.


Mobile Robot Localization and Map Building

Mobile Robot Localization and Map Building

Author: Jose A. Castellanos

Publisher: Springer

Published: 2000-03-31

Total Pages: 205

ISBN-13: 9780792377894

DOWNLOAD EBOOK

During the last decade, many researchers have dedicated their efforts to constructing revolutionary machines and to providing them with forms of artificial intelligence to perform some of the most hazardous, risky or monotonous tasks historically assigned to human beings. Among those machines, mobile robots are undoubtedly at the cutting edge of current research directions. A rough classification of mobile robots can be considered: on the one hand, mobile robots oriented to human-made indoor environments; on the other hand, mobile robots oriented to unstructured outdoor environments, which could include flying oriented robots, space-oriented robots and underwater robots. The most common motion mechanism for surface mobile robots is the wheel-based mechanism, adapted both to flat surfaces, found in human-made environments, and to rough terrain, found in outdoor environments. However, some researchers have reported successful developments with leg-based mobile robots capable of climbing up stairs, although they require further investigation. The research work presented here focuses on wheel-based mobile robots that navigate in human-made indoor environments. The main problems described throughout this book are: Representation and integration of uncertain geometric information by means of the Symmetries and Perturbations Model (SPmodel). This model combines the use of probability theory to represent the imprecision in the location of a geometric element, and the theory of symmetries to represent the partiality due to characteristics of each type of geometric element. A solution to the first location problem, that is, the computation of an estimation for the mobile robot location when the vehicle is completely lost in the environment. The problem is formulated as a search in an interpretation tree using efficient matching algorithms and geometric constraints to reduce the size of the solution space. The book proposes a new probabilistic framework adapted to the problem of simultaneous localization and map building for mobile robots: the Symmetries and Perturbations Map (SPmap). This framework has been experimentally validated by a complete experiment which profited from ground-truth to accurately validate the precision and the appropriateness of the approach. The book emphasizes the generality of the solutions proposed to the different problems and their independence with respect to the exteroceptive sensors mounted on the mobile robot. Theoretical results are complemented by real experiments, where the use of multisensor-based approaches is highlighted.


Vision Based Localization of Mobile Robots

Vision Based Localization of Mobile Robots

Author: Jason Mooberry

Publisher:

Published: 2007

Total Pages: 68

ISBN-13:

DOWNLOAD EBOOK

"Mobile robotics is an active and exciting sub-field of Computer Science. Its importance is easily witnessed in a variety of undertakings from DARPA's Grand Challenge to NASA's Mars exploration program. The field is relatively young, and still many challenges face roboticists across the boards. One important area of research is localization, which concerns itself with granting a robot the ability to discover and continually update an internal representation of its position. Vision based sensor systems have been investigated, but to much lesser extent than other popular techniques. A custom mobile platform has been constructed on top of which a monocular vision based localization system has been implemented. The rigorous gathering of empirical data across a large group of parameters germane to the problem has led to various findings about monocular vision based localization and the fitness of the custom robot platform. The localization component is based on a probabilistic technique called Monte-Carlo Localization (MCL) that tolerates a variety of different sensors and effectors, and has further proven to be adept at localization in diverse circumstances. Both a motion model and sensor model that drive the particle filter at the algorithm's core have been carefully derived. The sensor model employs a simple correlation process that leverages color histograms and edge detection to filter robot pose estimations via the on board vision. This algorithm relies on image matching to tune position estimates based on a priori knowledge of its environment in the form of a feature library. It is believed that leveraging different computationally inexpensive features can lead to efficient and robust localization with MCL. The central goal of this thesis is to implement and arrive at such a conclusion through the gathering of empirical data. Section 1 presents a brief introduction to mobile robot localization and robot architectures, while section 2 covers MCL itself in more depth. Section 3 elaborates on the localization strategy, modeling and implementation that forms the basis of the trials that are presented toward the end of that section. Section 4 presents a revised implementation that attempts to address shortcomings identified during localization trials. Finally in section 5, conclusions are drawn about the effectiveness of the localization implementation and a path to improved localization with monocular vision is posited"--Abstract.


Introduction to AI Robotics, second edition

Introduction to AI Robotics, second edition

Author: Robin R. Murphy

Publisher: MIT Press

Published: 2019-10-01

Total Pages: 649

ISBN-13: 026203848X

DOWNLOAD EBOOK

A comprehensive survey of artificial intelligence algorithms and programming organization for robot systems, combining theoretical rigor and practical applications. This textbook offers a comprehensive survey of artificial intelligence (AI) algorithms and programming organization for robot systems. Readers who master the topics covered will be able to design and evaluate an artificially intelligent robot for applications involving sensing, acting, planning, and learning. A background in AI is not required; the book introduces key AI topics from all AI subdisciplines throughout the book and explains how they contribute to autonomous capabilities. This second edition is a major expansion and reorganization of the first edition, reflecting the dramatic advances made in AI over the past fifteen years. An introductory overview provides a framework for thinking about AI for robotics, distinguishing between the fundamentally different design paradigms of automation and autonomy. The book then discusses the reactive functionality of sensing and acting in AI robotics; introduces the deliberative functions most often associated with intelligence and the capability of autonomous initiative; surveys multi-robot systems and (in a new chapter) human-robot interaction; and offers a “metaview” of how to design and evaluate autonomous systems and the ethical considerations in doing so. New material covers locomotion, simultaneous localization and mapping, human-robot interaction, machine learning, and ethics. Each chapter includes exercises, and many chapters provide case studies. Endnotes point to additional reading, highlight advanced topics, and offer robot trivia.


Robot Vision

Robot Vision

Author: Stefan Florczyk

Publisher: John Wiley & Sons

Published: 2006-03-06

Total Pages: 216

ISBN-13: 352760491X

DOWNLOAD EBOOK

The book is intended for advanced students in physics, mathematics, computer science, electrical engineering, robotics, engine engineering and for specialists in computer vision and robotics on the techniques for the development of vision-based robot projects. It focusses on autonomous and mobile service robots for indoor work, and teaches the techniques for the development of vision-based robot projects. A basic knowledge of informatics is assumed, but the basic introduction helps to adjust the knowledge of the reader accordingly. A practical treatment of the material enables a comprehensive understanding of how to handle specific problems, such as inhomogeneous illumination or occlusion. With this book, the reader should be able to develop object-oriented programs and show mathematical basic understanding. Such topics as image processing, navigation, camera types and camera calibration structure the described steps of developing further applications of vision-based robot projects.


New Development in Robot Vision

New Development in Robot Vision

Author: Yu Sun

Publisher: Springer

Published: 2014-09-26

Total Pages: 209

ISBN-13: 3662438593

DOWNLOAD EBOOK

The field of robotic vision has advanced dramatically recently with the development of new range sensors. Tremendous progress has been made resulting in significant impact on areas such as robotic navigation, scene/environment understanding, and visual learning. This edited book provides a solid and diversified reference source for some of the most recent important advancements in the field of robotic vision. The book starts with articles that describe new techniques to understand scenes from 2D/3D data such as estimation of planar structures, recognition of multiple objects in the scene using different kinds of features as well as their spatial and semantic relationships, generation of 3D object models, approach to recognize partially occluded objects, etc. Novel techniques are introduced to improve 3D perception accuracy with other sensors such as a gyroscope, positioning accuracy with a visual servoing based alignment strategy for microassembly, and increasing object recognition reliability using related manipulation motion models. For autonomous robot navigation, different vision-based localization and tracking strategies and algorithms are discussed. New approaches using probabilistic analysis for robot navigation, online learning of vision-based robot control, and 3D motion estimation via intensity differences from a monocular camera are described. This collection will be beneficial to graduate students, researchers, and professionals working in the area of robotic vision.


Introduction to Autonomous Mobile Robots, second edition

Introduction to Autonomous Mobile Robots, second edition

Author: Roland Siegwart

Publisher: MIT Press

Published: 2011-02-18

Total Pages: 473

ISBN-13: 0262295091

DOWNLOAD EBOOK

The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.


Probabilistic Robotics

Probabilistic Robotics

Author: Sebastian Thrun

Publisher: MIT Press

Published: 2005-08-19

Total Pages: 668

ISBN-13: 0262201623

DOWNLOAD EBOOK

An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.