Useful as a reference work, this book offers a good balance between theoretical concepts and practical solutions, with more rigorous formulation of certain problems such as motion estimation, sampling, basic coding theory. Provides an in-depth exposition of fundamental theory and techniques for video processing, including frequency domain characterization of video signals and visual perception, video sampling and format conversion, two dimensional and three dimensional motion estimation. Also presents techniques important for video communications, including video coding and error control, and up-to-date coverage on recent international standards on video communications. A chapter is devoted to video streaming over Internet and wireless networks, one of the most popular video communication applications. In addition, it discusses processing and communications of stereoscopic and multiview video. Practicing researchers and engineers.
55% new material in the latest edition of this "must-have for students and practitioners of image & video processing!This Handbook is intended to serve as the basic reference point on image and video processing, in the field, in the research laboratory, and in the classroom. Each chapter has been written by carefully selected, distinguished experts specializing in that topic and carefully reviewed by the Editor, Al Bovik, ensuring that the greatest depth of understanding be communicated to the reader. Coverage includes introductory, intermediate and advanced topics and as such, this book serves equally well as classroom textbook as reference resource. • Provides practicing engineers and students with a highly accessible resource for learning and using image/video processing theory and algorithms • Includes a new chapter on image processing education, which should prove invaluable for those developing or modifying their curricula • Covers the various image and video processing standards that exist and are emerging, driving today's explosive industry • Offers an understanding of what images are, how they are modeled, and gives an introduction to how they are perceived • Introduces the necessary, practical background to allow engineering students to acquire and process their own digital image or video data • Culminates with a diverse set of applications chapters, covered in sufficient depth to serve as extensible models to the reader's own potential applications About the Editor... Al Bovik is the Cullen Trust for Higher Education Endowed Professor at The University of Texas at Austin, where he is the Director of the Laboratory for Image and Video Engineering (LIVE). He has published over 400 technical articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik was Distinguished Lecturer of the IEEE Signal Processing Society (2000), received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millennium Medal (2000), and twice was a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a Fellow of the IEEE, was Editor-in-Chief, of the IEEE Transactions on Image Processing (1996-2002), has served on and continues to serve on many other professional boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing which was held in Austin, Texas in 1994.* No other resource for image and video processing contains the same breadth of up-to-date coverage* Each chapter written by one or several of the top experts working in that area* Includes all essential mathematics, techniques, and algorithms for every type of image and video processing used by electrical engineers, computer scientists, internet developers, bioengineers, and scientists in various, image-intensive disciplines
Video is one of the most important forms of multimedia available, as it is utilized for security purposes, to transmit information, promote safety, and provide entertainment. As motion is the most integral element in videos, it is important that motion detection systems and algorithms meet specific requirements to achieve accurate detection of real time events. Feature Detectors and Motion Detection in Video Processing explores innovative methods and approaches to analyzing and retrieving video images. Featuring empirical research and significant frameworks regarding feature detectors and descriptor algorithms, the book is a critical reference source for professionals, researchers, advanced-level students, technology developers, and academicians.
As multimedia applications have become part of contemporary daily life, numerous paradigm-shifting technologies in multimedia processing have emerged over the last decade. Substantially updated with 21 new chapters, Multimedia Image and Video Processing, Second Edition explores the most recent advances in multimedia research and applications. This edition presents a comprehensive treatment of multimedia information mining, security, systems, coding, search, hardware, and communications as well as multimodal information fusion and interaction. Clearly divided into seven parts, the book begins with a section on standards, fundamental methods, design issues, and typical architectures. It then focuses on the coding of video and multimedia content before covering multimedia search, retrieval, and management. After examining multimedia security, the book describes multimedia communications and networking and explains the architecture design and implementation for multimedia image and video processing. It concludes with a section on multimedia systems and applications. Written by some of the most prominent experts in the field, this updated edition provides readers with the latest research in multimedia processing and equips them with advanced techniques for the design of multimedia systems.
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Video, Speech, and Audio Signal Processing and Associated Standards, provides thorough coverage of the basic foundations of speech, audio, image, and video processing and associated applications to broadcast, storage, search and retrieval, and communications.
With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.
Describes ITU H H.323 and H.324, H.263, ITU-T video, and MPEG-4 standards, systems, and coding; IP and ATM networks; multimedia search and retrieval; image retrieval in digital laboratories; and the status and direction of MPEG-7.
An engineer's introduction to concepts, algorithms, and advancements in Digital Signal Processing. This lucidly written resource makes extensive use of real-world examples as it covers all the important design and engineering references.
Convex Optimization for Signal Processing and Communications: From Fundamentals to Applications provides fundamental background knowledge of convex optimization, while striking a balance between mathematical theory and applications in signal processing and communications. In addition to comprehensive proofs and perspective interpretations for core convex optimization theory, this book also provides many insightful figures, remarks, illustrative examples, and guided journeys from theory to cutting-edge research explorations, for efficient and in-depth learning, especially for engineering students and professionals. With the powerful convex optimization theory and tools, this book provides you with a new degree of freedom and the capability of solving challenging real-world scientific and engineering problems.