Useful as a reference work, this book offers a good balance between theoretical concepts and practical solutions, with more rigorous formulation of certain problems such as motion estimation, sampling, basic coding theory. Provides an in-depth exposition of fundamental theory and techniques for video processing, including frequency domain characterization of video signals and visual perception, video sampling and format conversion, two dimensional and three dimensional motion estimation. Also presents techniques important for video communications, including video coding and error control, and up-to-date coverage on recent international standards on video communications. A chapter is devoted to video streaming over Internet and wireless networks, one of the most popular video communication applications. In addition, it discusses processing and communications of stereoscopic and multiview video. Practicing researchers and engineers.
The hand is quicker than the eye. In many cases, so is digital video. Maintaining image quality in bandwidth- and memory-restricted environments is quickly becoming a reality as thriving research delves ever deeper into perceptual coding techniques, which discard superfluous data that humans cannot process or detect. Surveying the topic from a Human Visual System (HVS)-based approach, Digital Video Image Quality and Perceptual Coding outlines the principles, metrics, and standards associated with perceptual coding, as well as the latest techniques and applications. This book is divided broadly into three parts. First, it introduces the fundamental theory, concepts, principles, and techniques underlying the field, such as the basics of compression, HVS modeling, and coding artifacts associated with current well-known techniques. The next section focuses on picture quality assessment criteria; subjective and objective methods and metrics, including vision model based digital video impairment metrics; testing procedures; and international standards regarding image quality. Finally, practical applications come into focus, including digital image and video coder designs based on the HVS as well as post-filtering, restoration, error correction, and concealment techniques. The permeation of digital images and video throughout the world cannot be understated. Nor can the importance of preserving quality while using minimal storage space, and Digital Video Image Quality and Perceptual Coding provides the tools necessary to accomplish this goal. Instructors and lecturers wishing to make use of this work as a textbook can download a presentation of 786 slides in PDF format organized to augment the text. accompany our book (H.R. Wu and K.R. Rao, Digital Video Image Quality and Perceptual Coding, CRC Press (ISBN: 0-8247-2777-0), Nov. 2005) for lecturers or instructor to use for their classes if they use the book.
55% new material in the latest edition of this "must-have for students and practitioners of image & video processing!This Handbook is intended to serve as the basic reference point on image and video processing, in the field, in the research laboratory, and in the classroom. Each chapter has been written by carefully selected, distinguished experts specializing in that topic and carefully reviewed by the Editor, Al Bovik, ensuring that the greatest depth of understanding be communicated to the reader. Coverage includes introductory, intermediate and advanced topics and as such, this book serves equally well as classroom textbook as reference resource. • Provides practicing engineers and students with a highly accessible resource for learning and using image/video processing theory and algorithms • Includes a new chapter on image processing education, which should prove invaluable for those developing or modifying their curricula • Covers the various image and video processing standards that exist and are emerging, driving today's explosive industry • Offers an understanding of what images are, how they are modeled, and gives an introduction to how they are perceived • Introduces the necessary, practical background to allow engineering students to acquire and process their own digital image or video data • Culminates with a diverse set of applications chapters, covered in sufficient depth to serve as extensible models to the reader's own potential applications About the Editor... Al Bovik is the Cullen Trust for Higher Education Endowed Professor at The University of Texas at Austin, where he is the Director of the Laboratory for Image and Video Engineering (LIVE). He has published over 400 technical articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik was Distinguished Lecturer of the IEEE Signal Processing Society (2000), received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millennium Medal (2000), and twice was a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a Fellow of the IEEE, was Editor-in-Chief, of the IEEE Transactions on Image Processing (1996-2002), has served on and continues to serve on many other professional boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing which was held in Austin, Texas in 1994.* No other resource for image and video processing contains the same breadth of up-to-date coverage* Each chapter written by one or several of the top experts working in that area* Includes all essential mathematics, techniques, and algorithms for every type of image and video processing used by electrical engineers, computer scientists, internet developers, bioengineers, and scientists in various, image-intensive disciplines
Video is one of the most important forms of multimedia available, as it is utilized for security purposes, to transmit information, promote safety, and provide entertainment. As motion is the most integral element in videos, it is important that motion detection systems and algorithms meet specific requirements to achieve accurate detection of real time events. Feature Detectors and Motion Detection in Video Processing explores innovative methods and approaches to analyzing and retrieving video images. Featuring empirical research and significant frameworks regarding feature detectors and descriptor algorithms, the book is a critical reference source for professionals, researchers, advanced-level students, technology developers, and academicians.
As multimedia applications have become part of contemporary daily life, numerous paradigm-shifting technologies in multimedia processing have emerged over the last decade. Substantially updated with 21 new chapters, Multimedia Image and Video Processing, Second Edition explores the most recent advances in multimedia research and applications. This edition presents a comprehensive treatment of multimedia information mining, security, systems, coding, search, hardware, and communications as well as multimodal information fusion and interaction. Clearly divided into seven parts, the book begins with a section on standards, fundamental methods, design issues, and typical architectures. It then focuses on the coding of video and multimedia content before covering multimedia search, retrieval, and management. After examining multimedia security, the book describes multimedia communications and networking and explains the architecture design and implementation for multimedia image and video processing. It concludes with a section on multimedia systems and applications. Written by some of the most prominent experts in the field, this updated edition provides readers with the latest research in multimedia processing and equips them with advanced techniques for the design of multimedia systems.
Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. This volume, Video, Speech, and Audio Signal Processing and Associated Standards, provides thorough coverage of the basic foundations of speech, audio, image, and video processing and associated applications to broadcast, storage, search and retrieval, and communications.
Showcasing the most influential developments, experiments, and architectures impacting the digital, surveillance, automotive, industrial, and medical sciences, this text/reference tracks the evolution and advancement of CVIP technologies - examining methods and algorithms for image analysis, optimization, segmentation, and restoration.
Describes ITU H H.323 and H.324, H.263, ITU-T video, and MPEG-4 standards, systems, and coding; IP and ATM networks; multimedia search and retrieval; image retrieval in digital laboratories; and the status and direction of MPEG-7.
Techniques for Optimizing Multiprocessor Implementations of Signal Processing Applications An indispensable component of the information age, signal processing is embedded in a variety of consumer devices, including cell phones and digital television, as well as in communication infrastructure, such as media servers and cellular base stations. Multiple programmable processors, along with custom hardware running in parallel, are needed to achieve the computation throughput required of such applications. Reviews important research in key areas related to the multiprocessor implementation of multimedia systems Embedded Multiprocessors: Scheduling and Synchronization, Second Edition presents architectures and design methodologies for parallel systems in embedded digital signal processing (DSP) applications. It discusses application modeling techniques for multimedia systems, the incorporation of interprocessor communication costs into multiprocessor scheduling decisions, and a modeling methodology (the synchronization graph) for multiprocessor system performance analysis. The book also applies the synchronization graph model to develop hardware and software optimizations that can significantly reduce the interprocessor communication overhead of a given schedule. Chronicles recent activity dealing with single-chip multiprocessors and dataflow models This edition updates the background material on existing embedded multiprocessors, including single-chip multiprocessors. It also summarizes the new research on dataflow models for signal processing that has been carried out since the publication of the first edition. Harness the power of multiprocessors This book explores the optimization of interprocessor communication and synchronization in embedded multiprocessor systems. It shows you how to design multiprocessor computer systems that are streamlined for multimedia applications.
With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.