Gamma ray astronomy, the branch of high energy astrophysics that studies the sky in energetic ?-ray photons, is destined to play a crucial role in the exploration of nonthermal phenomena in the Universe in their most extreme and violent forms. The great potential of this discipline offers impressive coverage of many OC hot topicsOCO of modern astrophysics and cosmology, such as the origin of galactic and extragalactic cosmic rays, particle acceleration and radiation processes under extreme astrophysical conditions, and the search for dark matter."
Gamma ray astronomy, the branch of high energy astrophysics that studies the sky in energetic Ýgamma¨-ray photons, is destined to play a crucial role in the exploration of nonthermal phenomena in the Universe in their most extreme and violent forms. This book presents the motivations and highlights the principal objectives of the field, as well as demonstrates its intrinsic links to other branches of high energy astrophysics. Preference is given to three topical areas: (i) origin of cosmic rays: (ii) physics and astrophysics of relativistic jets: (iii) observational gamma ray cosmology. Also, a significant part of the book is devoted to the discussion of the principal mechanisms of production and absorption of energetic Ýgamma¨-rays in different astrophysical environments, as well as to the description of the detection methods of high energy cosmic Ýgamma¨- radiation.
Beginning with Einstein's special and general theories of relativity, the authors give a detailed mathematical description of fundamental astrophysical radiation processes, including Compton scattering of electrons and photons, synchrotron radiation of particles in magnetic fields, and much more.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
Very-high-energy astrophysics studies the most energetic photons in the sky, allowing the exploration of violent and extreme non-thermal phenomena in the Universe. Significant advances in knowledge have been made in this field using ground-based imaging atmospheric Cherenkov telescopes (IACTs) as detectors, to study these physical processes in the Universe. This book reviews the progress in the field since the advent of the second generation IACTs around 2004. Going through the scientific highlights obtained by the three current instruments of this kind, H.E.S.S., MAGIC and VERITAS, operating now for more than 15 years, this book presents a state-of-the-art knowledge in four areas of modern astrophysics and cosmology, namely the origin of the cosmic rays, the physics of compact objects and their resulting relativistic outflows, gamma-ray cosmology, and the search for dark matter. Along with a detailed review of the outstanding scientific outcomes, a summary of the key technological developments that yielded the recognized success of the technique is also provided.This book is written for early-career academics in the fields of astrophysics, high energy physics and cosmology. At the same time, it can serve as a source of reference for the expert in the field.
High energy gamma-ray photons are the prime probes of the relativistic or high-energy universe, populated by black holes, neutron stars, supernovae, quasars, and matter-antimatter annihilations. Through studying the gamma-ray sky, astrophysicists are able to better understand the formation and behavior of these exotic and energetic bodies. V
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery.Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
With the success of Cherenkov Astronomy and more recently with the launch of NASA’s Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergström presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.
This book summarizes the science to be carried out by the upcoming Cherenkov Telescope Array, a major ground-based gamma-ray observatory that will be constructed over the next six to eight years. The major scientific themes, as well as core program of key science projects, have been developed by the CTA Consortium, a collaboration of scientists from many institutions worldwide.CTA will be the major facility in high-energy and very high-energy photon astronomy over the next decade and beyond. CTA will have capabilities well beyond past and present observatories. Thus, CTA's science program is expected to be rich and broad and will complement other major multiwavelength and multimessenger facilities. This book is intended to be the primary resource for the science case for CTA and it thus will be of great interest to the broader physics and astronomy communities. The electronic version (e-book) is available in open access.
A brief, cutting-edge introduction to the brightest cosmic phenomena known to science Gamma-ray bursts are the brightest—and, until recently, among the least understood—cosmic events in the universe. Discovered by chance during the cold war, these evanescent high-energy explosions confounded astronomers for decades. But a rapid series of startling breakthroughs beginning in 1997 revealed that the majority of gamma-ray bursts are caused by the explosions of young and massive stars in the vast star-forming cauldrons of distant galaxies. New findings also point to very different origins for some events, serving to complicate but enrich our understanding of the exotic and violent universe. What Are Gamma-Ray Bursts? is a succinct introduction to this fast-growing subject, written by an astrophysicist who is at the forefront of today's research into these incredible cosmic phenomena. Joshua Bloom gives readers a concise and accessible overview of gamma-ray bursts and the theoretical framework that physicists have developed to make sense of complex observations across the electromagnetic spectrum. He traces the history of remarkable discoveries that led to our current understanding of gamma-ray bursts, and reveals the decisive role these phenomena could play in the grand pursuits of twenty-first century astrophysics, from studying gravity waves and unveiling the growth of stars and galaxies after the big bang to surmising the ultimate fate of the universe itself. What Are Gamma-Ray Bursts? is an essential primer to this exciting frontier of scientific inquiry, and a must-read for anyone seeking to keep pace with cutting-edge developments in physics today.