Vertebrate Photoreceptors

Vertebrate Photoreceptors

Author: Takahisa Furukawa

Publisher: Springer

Published: 2016-08-23

Total Pages: 0

ISBN-13: 9784431563358

DOWNLOAD EBOOK

This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.


Vertebrate Photoreceptors

Vertebrate Photoreceptors

Author: Takahisa Furukawa

Publisher: Springer Science & Business Media

Published: 2014-04-15

Total Pages: 389

ISBN-13: 4431548807

DOWNLOAD EBOOK

This book provides a series of comprehensive views on various important aspects of vertebrate photoreceptors. The vertebrate retina is a tissue that provides unique experimental advantages to neuroscientists. Photoreceptor neurons are abundant in this tissue and they are readily identifiable and easily isolated. These features make them an outstanding model for studying neuronal mechanisms of signal transduction, adaptation, synaptic transmission, development, differentiation, diseases and regeneration. Thanks to recent advances in genetic analysis, it also is possible to link biochemical and physiological investigations to understand the molecular mechanisms of vertebrate photoreceptors within a functioning retina in a living animal. Photoreceptors are the most deeply studied sensory receptor cells, but readers will find that many important questions remain. We still do not know how photoreceptors, visual pigments and their signaling pathways evolved, how they were generated and how they are maintained. This book will make clear what is known and what is not known. The chapters are selected from fields of studies that have contributed to a broad understanding of the birth, development, structure, function and death of photoreceptor neurons. The underlying common word in all of the chapters that is used to describe these mechanisms is “molecule”. Only with this word can we understand how these highly specific neurons function and survive. It is challenging for even the foremost researchers to cover all aspects of the subject. Understanding photoreceptors from several different points of view that share a molecular perspective will provide readers with a useful interdisciplinary perspective.


Animal Models in Eye Research

Animal Models in Eye Research

Author:

Publisher: Academic Press

Published: 2011-04-28

Total Pages: 230

ISBN-13: 0080921035

DOWNLOAD EBOOK

The eye is a complex sensory organ, which enables visual perception of the world. Thus the eye has several tissues that do different tasks. One of the most basic aspects of eye function is the sensitivity of cells to light and its transduction though the optic nerve to the brain. Different organisms use different ways to achieve these tasks. In this sense, eye function becomes a very important evolutionary aspect as well. This book presents the different animal models that are commonly used for eye research and their uniqueness in evaluating different aspects of eye development, evolution, physiology and disease. - Presents information on the major animal models used in eye research including invertebrates and vertebrates - Provides researchers with information needed to choose between model organisms - Includes an introductory chapter on the different types of eyes, stressing possible common molecular machinery


Drosophila Eye Development

Drosophila Eye Development

Author: Kevin Moses

Publisher: Springer Science & Business Media

Published: 2002-03-12

Total Pages: 296

ISBN-13: 9783540425908

DOWNLOAD EBOOK

1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.


Cell Biology by the Numbers

Cell Biology by the Numbers

Author: Ron Milo

Publisher: Garland Science

Published: 2015-12-07

Total Pages: 400

ISBN-13: 1317230698

DOWNLOAD EBOOK

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid


Photoreceptor Cell Biology and Inherited Retinal Degenerations

Photoreceptor Cell Biology and Inherited Retinal Degenerations

Author: David S. Williams

Publisher: World Scientific

Published: 2004

Total Pages: 460

ISBN-13: 9789812561756

DOWNLOAD EBOOK

This important book presents review articles on the cell biology of photoreceptor and RPE cells, as well as the relationship between this cell biology and inherited photoreceptor degeneration. The chapters have been written by leaders in the field. The vision scientist will see this book as a review of photoreceptor and RPE cell biology, and known molecular bases of many forms of retinitis pigmentosa and related retinal degeneration.


Photoreceptors and Calcium

Photoreceptors and Calcium

Author: Wolfgang Baehr

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 636

ISBN-13: 1461501210

DOWNLOAD EBOOK

This volume foxuses on the status of Ca2+ ions in regulation of phototransduction, light adaptation and the recovery phase in vertebrate photoreceptors. Particular emphasis is given to Ca2+-binding proteins and their targets, among them particulate guanylate cyclases, GPCR-coupled kinases and cyclic nucleotide-gated cation channels. The book also expands our understanding of events invovling Ca2+ in the retinal pigment epithelium, in synaptic transmission and secondary retinal neurons. A significant part of the book is dedicated to the role of Ca2+ in invertebrate phototransduction, the best-studied phospholipid-mediated signal transduction pathway. Several chapters explore association of gene defects with human retina disease and the generation of animal models of retinal degeneration.


An Atlas on the Comparative Anatomy of the Retinae of Vertebrates

An Atlas on the Comparative Anatomy of the Retinae of Vertebrates

Author: David T. W. Yew

Publisher: Bentham Science Publishers

Published: 2012-01-25

Total Pages: 275

ISBN-13: 1608051943

DOWNLOAD EBOOK

"This atlas covers basic as well as novel information on the retinae of various representative vertebrates including fish, amphibians, reptiles, birds, and mammals.The book consists of over 200 illustrations with brief descriptions pointing out special f"