Finite-Dimensional Vector Spaces

Finite-Dimensional Vector Spaces

Author: Paul R. Halmos

Publisher: Courier Dover Publications

Published: 2017-05-24

Total Pages: 209

ISBN-13: 0486822265

DOWNLOAD EBOOK

Classic, widely cited, and accessible treatment offers an ideal supplement to many traditional linear algebra texts. "Extremely well-written and logical, with short and elegant proofs." — MAA Reviews. 1958 edition.


Finite Dimensional Vector Spaces

Finite Dimensional Vector Spaces

Author: Paul R. Halmos

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 206

ISBN-13: 1400882230

DOWNLOAD EBOOK

As a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write Finite Dimensional Vector Spaces. The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space."


Finite Dimensional Vector Spaces

Finite Dimensional Vector Spaces

Author: Paul R. Halmos

Publisher: Princeton University Press

Published: 1947-01-21

Total Pages: 212

ISBN-13: 9780691090955

DOWNLOAD EBOOK

As a newly minted Ph.D., Paul Halmos came to the Institute for Advanced Study in 1938--even though he did not have a fellowship--to study among the many giants of mathematics who had recently joined the faculty. He eventually became John von Neumann's research assistant, and it was one of von Neumann's inspiring lectures that spurred Halmos to write Finite Dimensional Vector Spaces. The book brought him instant fame as an expositor of mathematics. Finite Dimensional Vector Spaces combines algebra and geometry to discuss the three-dimensional area where vectors can be plotted. The book broke ground as the first formal introduction to linear algebra, a branch of modern mathematics that studies vectors and vector spaces. The book continues to exert its influence sixty years after publication, as linear algebra is now widely used, not only in mathematics but also in the natural and social sciences, for studying such subjects as weather problems, traffic flow, electronic circuits, and population genetics. In 1983 Halmos received the coveted Steele Prize for exposition from the American Mathematical Society for "his many graduate texts in mathematics dealing with finite dimensional vector spaces, measure theory, ergodic theory, and Hilbert space."


Finite-Dimensional Linear Algebra

Finite-Dimensional Linear Algebra

Author: Mark S. Gockenbach

Publisher: CRC Press

Published: 2011-06-15

Total Pages: 674

ISBN-13: 143981564X

DOWNLOAD EBOOK

Linear algebra forms the basis for much of modern mathematics—theoretical, applied, and computational. Finite-Dimensional Linear Algebra provides a solid foundation for the study of advanced mathematics and discusses applications of linear algebra to such diverse areas as combinatorics, differential equations, optimization, and approximation. The author begins with an overview of the essential themes of the book: linear equations, best approximation, and diagonalization. He then takes students through an axiomatic development of vector spaces, linear operators, eigenvalues, norms, and inner products. In addition to discussing the special properties of symmetric matrices, he covers the Jordan canonical form, an important theoretical tool, and the singular value decomposition, a powerful tool for computation. The final chapters present introductions to numerical linear algebra and analysis in vector spaces, including a brief introduction to functional analysis (infinite-dimensional linear algebra). Drawing on material from the author’s own course, this textbook gives students a strong theoretical understanding of linear algebra. It offers many illustrations of how linear algebra is used throughout mathematics.


Finite Dimensional Vector Spaces; 2nd Edition

Finite Dimensional Vector Spaces; 2nd Edition

Author: Paul R (Paul Richard) 1916- Halmos

Publisher: Hassell Street Press

Published: 2021-09-09

Total Pages: 216

ISBN-13: 9781013915352

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Linear Algebra Done Right

Linear Algebra Done Right

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 1997-07-18

Total Pages: 276

ISBN-13: 9780387982595

DOWNLOAD EBOOK

This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.


Finite Dimensional Linear Systems

Finite Dimensional Linear Systems

Author: Roger W. Brockett

Publisher: SIAM

Published: 2015-05-26

Total Pages: 260

ISBN-13: 1611973872

DOWNLOAD EBOOK

Originally published in 1970, Finite Dimensional Linear Systems is a classic textbook that provides a solid foundation for learning about dynamical systems and encourages students to develop a reliable intuition for problem solving. The theory of linear systems has been the bedrock of control theory for 50 years and has served as the springboard for many significant developments, all the while remaining impervious to change. Since linearity lies at the heart of much of the mathematical analysis used in applications, a firm grounding in its central ideas is essential. This book touches upon many of the standard topics in applied mathematics, develops the theory of linear systems in a systematic way, making as much use as possible of vector ideas, and contains a number of nontrivial examples and many exercises.


Quadratic Forms in Infinite Dimensional Vector Spaces

Quadratic Forms in Infinite Dimensional Vector Spaces

Author: Herbert Gross

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 432

ISBN-13: 1475714548

DOWNLOAD EBOOK

For about a decade I have made an effort to study quadratic forms in infinite dimensional vector spaces over arbitrary division rings. Here we present in a systematic fashion half of the results found du ring this period, to wit, the results on denumerably infinite spaces (" ~O- forms") . Certain among the resul ts included here had of course been published at the time when they were found, others appear for the first time (the case, for example, in Chapters IX, X, XII where I in clude results contained in the Ph.D.theses by my students w. Allenspach, L. Brand, U. Schneider, M. Studer). If one wants to give an introduction to the geometric algebra of infinite dimensional quadratic spaces, a discussion of ~ -dimensional 0 spaces ideally serves the purpose. First, these spaces show a large nurober of phenomena typical of infinite dimensional spaces. Second, most proofs can be done by recursion which resembles the familiar pro cedure by induction in the finite dimensional Situation. Third, the student acquires a good feeling for the linear algebra in infinite di mensions because it is impossible to camouflage problems by topological expedients (in dimension ~O it is easy to see, in a given case, wheth er topological language is appropriate or not) .


Linear Algebra Problem Book

Linear Algebra Problem Book

Author: Paul R. Halmos

Publisher: American Mathematical Soc.

Published: 1995-12-31

Total Pages: 349

ISBN-13: 1614442126

DOWNLOAD EBOOK

Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebraand today that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself, or if so desired, it can be stirred in with a standard linear algebra course as the seasoning that provides the interest, the challenge, and the motivation that is needed by experienced scholars as much as by beginning students. The best way to learn is to do, and the purpose of this book is to get the reader to DO linear algebra. The approach is Socratic: first ask a question, then give a hint (if necessary), then, finally, for security and completeness, provide the detailed answer.


Asymptotic Theory of Finite Dimensional Normed Spaces

Asymptotic Theory of Finite Dimensional Normed Spaces

Author: Vitali D. Milman

Publisher: Springer

Published: 2009-02-27

Total Pages: 166

ISBN-13: 3540388222

DOWNLOAD EBOOK

This book deals with the geometrical structure of finite dimensional normed spaces, as the dimension grows to infinity. This is a part of what came to be known as the Local Theory of Banach Spaces (this name was derived from the fact that in its first stages, this theory dealt mainly with relating the structure of infinite dimensional Banach spaces to the structure of their lattice of finite dimensional subspaces). Our purpose in this book is to introduce the reader to some of the results, problems, and mainly methods developed in the Local Theory, in the last few years. This by no means is a complete survey of this wide area. Some of the main topics we do not discuss here are mentioned in the Notes and Remarks section. Several books appeared recently or are going to appear shortly, which cover much of the material not covered in this book. Among these are Pisier's [Pis6] where factorization theorems related to Grothendieck's theorem are extensively discussed, and Tomczak-Jaegermann's [T-Jl] where operator ideals and distances between finite dimensional normed spaces are studied in detail. Another related book is Pietch's [Pie].