Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) Life History Diversity and Growth Variability in a Large Freshwater Tidal Estuary

Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) Life History Diversity and Growth Variability in a Large Freshwater Tidal Estuary

Author: Pascale A. L. Goertler

Publisher:

Published: 2014

Total Pages: 91

ISBN-13:

DOWNLOAD EBOOK

For many fish and wildlife species, a mosaic of available habitats is required to complete their life cycle, and is considered necessary to ensure population stability and persistence. Particularly for young animals, nursery habitats provide opportunities for rapid growth and high survival during this vulnerable life stage. My thesis focuses on juvenile Chinook salmon (Oncorhynchus tshawytscha) and their use of estuarine wetlands as nursery habitat. Estuaries are highly productive systems representing a mosaic of habitats connecting rivers to the sea, and freshwater tidal estuaries provide abundant prey communities, shade, refuge from predation and transitional habitat for the osmoregulatory changes experienced by anadromous fishes. I will be discussing the freshwater tidal wetland habitat use of juvenile Chinook salmon in the Columbia River estuary, which are listed under the Endangered Species Act. I used otolith microstructural growth estimates and prey consumption to measure rearing habitat quality. This sampling effort was designed to target as much genetic diversity as possible, and individual assignment to regional stocks of origin was used to describe the diversity of juvenile Chinook salmon groups inhabiting the estuary. Diversity is important for resilience, and in salmon biocomplexity within fish stocks has been shown to ensure collective productivity despite environmental change. However much of the research which links diversity to resilience in salmon has focused on the adult portion of the life cycle and many resource management policies oversimplify juvenile life history diversity. When this oversimplification of juvenile life history diversity is applied to salmon conservation it may be ignoring critical indicators for stability. Therefore in addition to genetic diversity I also explore methods for better defining juvenile life history diversity and its application in salmon management, such as permitting requirements, habitat restoration, hydropower practices and hatchery management. This study addresses how juvenile salmon growth changes among a range of wetland habitats in the freshwater tidal portion of the Columbia River estuary and how growth variation describes and contributes to life history diversity. To do this, I incorporated otolith microstructure, individual assignment to regional stock of origin, GIS habitat mapping and diet composition, in three habitats (mainstem river, tributary confluence and backwater channel) along ~130 km of the upper estuary. For my first chapter I employed a generalized linear model (GLM) to test three hypotheses: juvenile Chinook growth was best explained by (1) temporal factors, (2) habitat use, or (3) demographic characteristics, such as stock of origin or the timing of seaward migration. I found that variation in growth was best explained by habitat type and an interaction between fork length and month of capture. Juvenile Chinook salmon grew faster in backwater channel habitat and later in the summer. I also found that mid-summer and late summer/fall subyearlings had the highest estuarine growth rates. When compared to other studies in the basin these juvenile Chinook grew on average 0.23, 0.11-0.43 mm/d in the freshwater tidal estuary, similar to estimates in the brackish estuary, but ~4 times slower than those in the plume and upstream reservoirs. However, survival studies from the system elucidated a possible tradeoff between growth and survival in the Columbia River basin. These findings present a unique example of the complexity in understanding the influences of the many processes that generate variation in growth rate for juvenile anadromous fish inhabiting estuaries. In my second chapter, I used otolith microstructure and growth trends produced in a dynamic factor analysis (DFA, a multivariate time series method only recently being used in fisheries) to identify the life history variation in juvenile Chinook salmon caught in the Columbia River estuary over a two-year period (2010-2012). I used genetic assignment to stock of origin and capture location and date with growth trajectories, as a proxy for habitat transitions, to reconstruct life history types. DFA estimated four to five growth trends were present in juvenile Chinook salmon caught in the Columbia River estuary, diversity currently being simplified in many management practices. Regional stocks and habitats did not display divergent growth histories, but the marked hatchery fish did ordinate very similarly in the trend loadings from the DFA analysis, suggesting that hatchery fish may not experience the same breadth of growth variability as wild fish. I was not able to quantify juvenile life history diversity, and juvenile Chinook life history diversity remains difficult to catalog and integrate into species conservation and habitat restoration for resource management. However, by expanding our understanding of how juvenile Chinook salmon experience their freshwater rearing environment we improve our capacity to conserve and manage salmon populations. The findings from my thesis provide the necessary information for a restoration framework to link habitat features with salmon management goals, such as juvenile growth, wild and genetic origin and life history diversity.


Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary

Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary

Author:

Publisher:

Published: 2008

Total Pages: 52

ISBN-13:

DOWNLOAD EBOOK

From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities within wetland habitats fell to low levels by July, similar to the pattern observed at mainstem beach-seining sites and coincident with high water temperatures that approached or exceeded 19 C by mid-summer. Wetland habitats were used primarily by small subyearling Chinook salmon, with the smallest size ranges (i.e., rarely exceeding 70 mm by the end of the wetland rearing season) at scrub/shrub forested sites above rkm 50. Wetland sites of all types were utilized by a diversity of genetic stock groups, including less abundant groups such as Interior Summer/Fall Chinook.


Dynamic Habitat Models for Estuary-dependent Chinook Salmon

Dynamic Habitat Models for Estuary-dependent Chinook Salmon

Author: Melanie Jeanne Davis

Publisher:

Published: 2019

Total Pages: 228

ISBN-13:

DOWNLOAD EBOOK

A complex mosaic of estuarine habitats is postulated to bolster the growth and survival of juvenile Chinook salmon by diversifying the availability and configuration of prey and refugia. Consequently, efforts are underway along the North American Pacific Coast to return modified coastal ecosystems to historical or near-historical conditions, but restoring habitats are often more sensitive to anthropogenic or climate-mediated disturbance than relict (unaltered) habitats. Estuaries are expected to experience longer inundation durations as sea-levels rise, leading to reductions in intertidal emergent marshes, mudflats, and eelgrass beds. Furthermore, rising ocean temperatures may have metabolic consequences for fall-run populations of Chinook salmon, which tend to out-migrate during the spring and summer. Extensive monitoring programs have allowed managers to assess the initial benefits of management efforts (including restoration) for juvenile salmon at local and regional scales, but at present they have limited options for predicting and responding to the concurrent effects of climate change in restoring and relict coastal ecosystems. For my dissertation I addressed this gap in knowledge using a comprehensive monitoring dataset from the restoring Nisqually River Delta in southern Puget Sound, Washington. I focused on the following questions: 1) How do juvenile Chinook salmon prey consumption and dietary energy density vary throughout a mosaic of estuarine habitats, and is this variation related to differences in physiological condition? 2) How do among-habitat differences in thermal regime and prey consumption affect the bioenergetic growth potential of juvenile Chinook salmon? 3) How will shifts in the estuarine habitat mosaic vary under different sea-level rise and management scenarios? and 4) How will these climate- and management-mediated shifts in the estuarine habitat mosaic impact habitat quality for juvenile Chinook salmon? To address the first question, I used stomach content and stable isotope analyses to analyze the diets of wild and hatchery Chinook salmon captured in different estuarine habitats during the out-migration season (March-July of 2014 and 2015). I also linked measures of stomach fullness and dietary energy density to body condition. To address the second question, I used a bioenergetics model to determine how among-habitat differences in water temperature and diet might affect juvenile Chinook salmon growth. To address the third question, I designed and calibrated a marsh accretion model and decision support tool using post-restoration monitoring data sets and spatial coverages. Finally, to address the fourth question, I combined output from the marsh accretion model, a hydrological model, and measurements of prey availability into a spatially explicit version of the bioenergetics model to assess the habitat quality and growth rate potential of the entire estuarine habitat mosaic under different sea-level rise and management scenarios. When considered in tandem, these chapters represent a novel approach to habitat management. Assessments of juvenile salmon diet and physiology, marsh accretion models, and bioenergetics models have been independently implemented along the Pacific Coast, but the amalgamation of all three approaches into a single, spatially explicit analysis represents a novel and significant contribution to the scientific literature. In conducting these analyses for the Nisqually River Delta, some major themes emerged regarding the importance and vulnerability of specific habitats. An integrative diet analysis using stomach contents and stable isotopes found distinct dietary niches between wild and hatchery Chinook salmon. Wild fish were more likely to utilize the freshwater tidal forested and transitional brackish marsh habitats along the main stem river, where energy-rich insect drift made up most of their dietary biomass. The availability and consumption of insect prey resulted in distinct benefits to body condition and growth, as determined by direct physiological measurements and output from the habitat-specific bioenergetics model. These findings highlight the importance of freshwater and brackish emergent marsh habitats with overhanging vegetation, which can regulate water temperatures and supply insect drift. Unfortunately, freshwater tidal forests, brackish marshes, and low and high elevation emergent salt marshes are highly vulnerable to sea-level rise, especially when geological and anthropogenic features limit sediment accretion or lateral expansion. When spatial layers from the marsh accretion model were incorporated into the spatially explicit version of the bioenergetics model, output indicated that loss of low and high salt marsh reduced the amount of prey available for juvenile salmon, thus decreasing modeled growth rate potential. In all, these findings highlight the importance of preserving the estuarine habitat mosaic for out-migrating juvenile salmon, especially as tidal regimes and ocean temperatures continue to shift through time.


Juvenile Chinook Salmon Life History Variation

Juvenile Chinook Salmon Life History Variation

Author: Bryce N. Oldemeyer

Publisher:

Published: 2015

Total Pages: 200

ISBN-13:

DOWNLOAD EBOOK

Over the last century, wild populations of salmonids in the Columbia River basin have significantly declined. Several of these populations have been listed as "threatened" under the Endangered Species Act and collaborative multi-state, multi-agency efforts have been established to manage and restore at-risk populations. A thorough understanding of a species' life history is necessary for effective conservation. A tool widely implemented to collect information during juvenile salmonid life stages is a rotary screw trap. Rotary screw traps sample juvenile salmonids as they migrate to the ocean but environmental conditions, low species abundances, and complex life histories can lead to sparse data. In this study I implemented a hierarchical Bayesian model to obtain abundance estimates from rotary screw traps with large periods of missing data and utilized this information to explore two predominant life history assemblages of juvenile Chinook salmon that have strong implications on survival and reproductive success.


Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha)

Connecting Tidal-fluvial Life Histories to Survival of McKenzie River Spring Chinook Salmon (Oncorhynchus Tshawytscha)

Author: Gordon W. Rose

Publisher:

Published: 2015

Total Pages: 111

ISBN-13:

DOWNLOAD EBOOK

Chinook salmon returns to the Columbia River basin have declined due to impacts of a growing human population, despite significant mitigation expenditures. Consequently, fisheries managers have become focused on recovery and long-term viability of at-risk populations. A viable population depends, in part, on the connectivity and quality of diverse habitat types salmon require to complete their anadromous life-cycles. The tidal-fluvial Columbia River estuary is one link in this chain of habitats, but was largely over-looked as important Chinook salmon habitat until recently. Habitat restoration projects are underway in the tidal Columbia River estuary with the goal of increasing survival benefits to juvenile Chinook salmon. However, knowledge gaps remain about stock-specific use of tidal-fluvial habitat and tracking these restoration efforts is largely subjective. This study has sought to quantify the importance of tidal-fluvial habitat for a critical population of Chinook salmon, from the McKenzie River in the upper Willamette River Basin. Using otolith micro-chemistry profile analysis, juvenile net growth in the tidal-fluvial Columbia River was back-calculated for 92 natural-origin McKenzie River Chinook salmon across outmigration years 2005 and 2006. All otoliths were sampled from McKenzie River adult salmon to draw inferences about the juvenile life histories of surviving spawners. Mean ± SD net growth in the tidal fluvial estuary for all years was 5.48 ± 5.81 mm for subyearlings and 7.43 ± 8.32mm for yearlings. Differences in mean net growth by juvenile life-history type were not significant despite a prevailing assumption that subyearlings rear longer in estuary habitat than yearlings. Emigration sizes and net-growth estimates were significantly greater for subyearlings in outmigration year 2005 than 2006; there was only suggestive evidence emigration sizes were greater for yearlings in outmigration year 2005 than 2006, and net-growth estimates were similar between years. Sixteen percent (15 of 92) of McKenzie Chinook salmon grew between 10 and 43 mm over approximately 25-100 days in the tidal-fluvial Columbia River. Extended rearing in tidal-fluvial habitat provided an alternate life-history pathway for some yearling (12), fingerling (one), and fry (two) migrants. Subyearlings with intermediate-rearing or migratory life history pathways had greater net growth in tidal-fluvial habitat during 2005 than 2006, and in 2005 environmental conditions were unfavorable to overall salmon productivity. Fixed effects linear regression models suggest tidal-fluvial habitat supports McKenzie Chinook salmon life-history diversity, growth, and size, and therefore likely contributes to population resilience.


Life Histories of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Estuary as Inferred from Scale and Otolith Microchemistry

Life Histories of Juvenile Chinook Salmon (Oncorhynchus Tshawytscha) in the Columbia River Estuary as Inferred from Scale and Otolith Microchemistry

Author: Lance A. Campbell

Publisher:

Published: 2010

Total Pages: 210

ISBN-13:

DOWNLOAD EBOOK

Despite evidence that juvenile Chinook salmon (Oncorhynchus tshawytscha) utilize North Pacific estuaries for growth and salinity acclimation, research in the Columbia River estuary has lead to opposing hypotheses about the estuary's importance as a salmon rearing environment. Many contemporary tagging studies indicate that salmon residency within the estuary is short (


Aspects of the Early Life History of Juvenile Salmonids in the Dungeness River Estuary

Aspects of the Early Life History of Juvenile Salmonids in the Dungeness River Estuary

Author: Nichole K. Sather

Publisher:

Published: 2009

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

The decline of many Pacific salmon stocks has stimulated interest in the early life history and habitat requirements of juvenile salmon. Although estuarine habitat associations of juvenile salmon have been investigated in many coastal areas of the eastern Pacific Ocean, until recently, little was known about juvenile salmonid ecology within the Straits of Juan de Fuca. During the Spring/Summer outmigration period in 2006 and 2007, I examined the early life history of the five species of anadromous salmon in the Dungeness River estuary on the north Olympic Peninsula, Washington. I sampled multiple spatial scales within several habitat types to characterize salmon distribution and habitat use. My results presented in this thesis are segregated into two components: 1) tidal marsh ecology of juvenile salmonids in the Dungeness River estuary, and 2) the landscape-scale distribution of juvenile salmonids within the Dungeness River estuary. I examined the population of juvenile salmonids within blind tidal sloughs near the vicinity of the Dungeness River delta. Salmonids were present within the tidal marshes throughout the entire outmigration period (e.g., March through July). Juvenile Chinook salmon (Oncorhynchus tshawytscha) were the most abundant salmonid species within the marshes. Based on the temporal distribution and size structure of juvenile Chinook salmon in the estuary I identified at least four life history types: 1) a fry strategy included a large pulse of fish emigrating from the river at a small size (e.g., 35-45mm FL) during late winter and early spring months; 2) the second group of fish was the least abundant group emigrating from the river from April through mid May at sizes ranging from 50-75mm FL; 3) the third group of migrants entered the estuary between from late spring through the summer months at larger sizes than the initial groups (e.g., 60-90mm FL); and 4) the final group of Chinook salmon included a stream-type yearling strategy. In addition to the four life history strategies identified for Chinook salmon, I detected at least three groups of chum salmon migrating into the estuary. These groups were distinguished by their size and timing of migration and are further described according to different rearing strategies. The distribution of juvenile salmonids was most strongly influenced by the degree of connectivity (i.e., distance) between the tidal marshes and the mouth of the Dungeness River. Habitat complexity and opportunity also governed the distribution of juvenile salmonids within the tidal marshes. I also sampled three regions of the estuary with a beach seine to investigate the nearshore distribution of juvenile salmonids within the Dungeness River estuary: the delta face, inner Bay, and outer Bay. Among the three regions, species composition was highly variable between 2006 and 2007. The most common salmonids encountered within the beach seine sites included Chinook salmon, chum salmon (O. kisutch), and pink salmon (O. gorbuscha). The relative abundance of salmonids was highest near the delta face and lowest within the outer bay area. The landscape-scale distribution and habitat use of juvenile salmonids within the Dungeness River estuary is largely influenced by ecosystem connectivity, but is also linked to biotic characteristics of the fish (e.g., life history type and fish size). Although the Dungeness includes hydrogeomorphic characteristics (e.g., steep river gradient, composition of sand spits in the estuary) unique to other Pacific Northwest watersheds, this system produces a variety of life history types comparable to other estuaries. Understanding the mechanisms that drive the distribution of juvenile salmonids within the Dungeness will supply local resource managers with a baseline with which to establish ecosystem restoration goals.