Variational Methods with Applications in Science and Engineering

Variational Methods with Applications in Science and Engineering

Author: Kevin W. Cassel

Publisher: Cambridge University Press

Published: 2013-07-22

Total Pages: 433

ISBN-13: 1107067375

DOWNLOAD EBOOK

There is a resurgence of applications in which the calculus of variations has direct relevance. In addition to application to solid mechanics and dynamics, it is now being applied in a variety of numerical methods, numerical grid generation, modern physics, various optimization settings and fluid dynamics. Many applications, such as nonlinear optimal control theory applied to continuous systems, have only recently become tractable computationally, with the advent of advanced algorithms and large computer systems. This book reflects the strong connection between calculus of variations and the applications for which variational methods form the fundamental foundation. The mathematical fundamentals of calculus of variations (at least those necessary to pursue applications) is rather compact and is contained in a single chapter of the book. The majority of the text consists of applications of variational calculus for a variety of fields.


Variational Methods in Mathematics, Science and Engineering

Variational Methods in Mathematics, Science and Engineering

Author: Karel Rektorys

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 566

ISBN-13: 9401164509

DOWNLOAD EBOOK

The impulse which led to the writing of the present book has emerged from my many years of lecturing in special courses for selected students at the College of Civil Engineering of the Tech nical University in Prague, from experience gained as supervisor and consultant to graduate students-engineers in the field of applied mathematics, and - last but not least - from frequent consultations with technicians as well as with physicists who have asked for advice in overcoming difficulties encountered in solving theoretical problems. Even though a varied combination of problems of the most diverse nature was often in question, the problems discussed in this book stood forth as the most essential to this category of specialists. The many discussions I have had gave rise to considerations on writing a book which should fill the rather unfortunate gap in our literature. The book is designed, in the first place, for specialists in the fields of theoretical engineering and science. However, it was my aim that the book should be of interest to mathematicians as well. I have been well aware what an ungrateful task it may be to write a book of the present type, and what problems such an effort can bring: Technicians and physicists on the one side, and mathematicians on the other, are often of diametrically opposing opinions as far as books con ceived for both these categories are concerned.


Variational Calculus with Engineering Applications

Variational Calculus with Engineering Applications

Author: Constantin Udriste

Publisher: John Wiley & Sons

Published: 2023-02-13

Total Pages: 228

ISBN-13: 1119944368

DOWNLOAD EBOOK

A comprehensive overview of foundational variational methods for problems in engineering Variational calculus is a field in which small alterations in functions and functionals are used to find their relevant maxima and minima. It is a potent tool for addressing a range of dynamic problems with otherwise counter-intuitive solutions, particularly ones incorporating multiple confounding variables. Its value in engineering fields, where materials and geometric configurations can produce highly specific problems with unconventional or unintuitive solutions, is considerable. Variational Calculus with Engineering Applications provides a comprehensive survey of this toolkit and its engineering applications. Balancing theory and practice, it offers a thorough and accessible introduction to the field pioneered by Euler, Lagrange and Hamilton, offering tools that can be every bit as powerful as the better-known Newtonian mechanics. It is an indispensable resource for those looking for engineering-oriented overview of a subject whose capacity to provide engineering solutions is only increasing. Variational Calculus with Engineering Applications readers will also find: Discussion of subjects including variational principles, levitation, geometric dynamics, and more Examples and instructional problems in every Chapter, along with MAPLE codes for performing the simulations described in each Engineering applications based on simple, curvilinear, and multiple integral functionals Variational Calculus with Engineering Applications is ideal for advanced students, researchers, and instructors in engineering and materials science.


Nuclear Reactor Physics

Nuclear Reactor Physics

Author: Weston M. Stacey

Publisher: John Wiley & Sons

Published: 2018-02-07

Total Pages: 766

ISBN-13: 352781230X

DOWNLOAD EBOOK

The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.


Introduction to Numerical Methods for Variational Problems

Introduction to Numerical Methods for Variational Problems

Author: Hans Petter Langtangen

Publisher: Springer Nature

Published: 2019-09-26

Total Pages: 395

ISBN-13: 3030237885

DOWNLOAD EBOOK

This textbook teaches finite element methods from a computational point of view. It focuses on how to develop flexible computer programs with Python, a programming language in which a combination of symbolic and numerical tools is used to achieve an explicit and practical derivation of finite element algorithms. The finite element library FEniCS is used throughout the book, but the content is provided in sufficient detail to ensure that students with less mathematical background or mixed programming-language experience will equally benefit. All program examples are available on the Internet.


Variational Methods in Imaging

Variational Methods in Imaging

Author: Otmar Scherzer

Publisher: Springer Science & Business Media

Published: 2008-09-26

Total Pages: 323

ISBN-13: 0387692770

DOWNLOAD EBOOK

This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Many numerical examples accompany the theory throughout the text. It is geared towards graduate students and researchers in applied mathematics. Researchers in the area of imaging science will also find this book appealing. It can serve as a main text in courses in image processing or as a supplemental text for courses on regularization and inverse problems at the graduate level.


Matrix, Numerical, and Optimization Methods in Science and Engineering

Matrix, Numerical, and Optimization Methods in Science and Engineering

Author: Kevin W. Cassel

Publisher: Cambridge University Press

Published: 2021-03-04

Total Pages: 728

ISBN-13: 1108787622

DOWNLOAD EBOOK

Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.