Variational Methods in the Mechanics of Solids

Variational Methods in the Mechanics of Solids

Author: S. Nemat-Nasser

Publisher: Elsevier

Published: 2017-01-31

Total Pages: 429

ISBN-13: 1483145832

DOWNLOAD EBOOK

Variational Methods in the Mechanics of Solids contains the proceedings of the International Union of Theoretical and Applied Mechanics Symposium on Variational Methods in the Mechanics of Solids, held at Northwestern University in Evanston, Illinois, on September 11-13, 1978. The papers focus on advances in the application of variational methods to a variety of mathematically and technically significant problems in solid mechanics. The discussions are organized around three themes: thermomechanical behavior of composites, elastic and inelastic boundary value problems, and elastic and inelastic dynamic problems. This book is comprised of 58 chapters and opens by addressing some questions of asymptotic expansions connected with composite and with perforated materials. The following chapters explore mathematical and computational methods in plasticity; variational irreversible thermodynamics of open physical-chemical continua; macroscopic behavior of elastic material with periodically spaced rigid inclusions; and application of the Lanczos method to structural vibration. Finite deformation of elastic beams and complementary theorems of solid mechanics are also considered, along with numerical contact elastostatics; periodic solutions in plasticity and viscoplasticity; and the convergence of the mixed finite element method in linear elasticity. This monograph will appeal to practitioners of mathematicians as well as theoretical and applied mechanics.


Variational Models and Methods in Solid and Fluid Mechanics

Variational Models and Methods in Solid and Fluid Mechanics

Author: Francesco dell'Isola

Publisher: Springer Science & Business Media

Published: 2012-01-15

Total Pages: 363

ISBN-13: 3709109833

DOWNLOAD EBOOK

F. dell'Isola, L. Placidi: Variational principles are a powerful tool also for formulating field theories. - F. dell'Isola, P. Seppecher, A. Madeo: Beyond Euler-Cauchy Continua. The structure of contact actions in N-th gradient generalized continua: a generalization of the Cauchy tetrahedron argument. - B. Bourdin, G.A. Francfort: Fracture. - S. Gavrilyuk: Multiphase flow modeling via Hamilton's principle. - V. L. Berdichevsky: Introduction to stochastic variational problems. - A. Carcaterra: New concepts in damping generation and control: theoretical formulation and industrial applications. - F. dell'Isola, P. Seppecher, A. Madeo: Fluid shock wave generation at solid-material discontinuity surfaces in porous media. Variational methods give an efficient and elegant way to formulate and solve mathematical problems that are of interest to scientists and engineers. In this book three fundamental aspects of the variational formulation of mechanics will be presented: physical, mathematical and applicative ones. The first aspect concerns the investigation of the nature of real physical problems with the aim of finding the best variational formulation suitable to those problems. The second aspect is the study of the well-posedeness of those mathematical problems which need to be solved in order to draw previsions from the formulated models. And the third aspect is related to the direct application of variational analysis to solve real engineering problems.


Solid Mechanics

Solid Mechanics

Author: Clive L. Dym

Publisher: Springer Science & Business Media

Published: 2013-04-05

Total Pages: 698

ISBN-13: 1461460344

DOWNLOAD EBOOK

Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.


Variational and Quasi-Variational Inequalities in Mechanics

Variational and Quasi-Variational Inequalities in Mechanics

Author: Alexander S. Kravchuk

Publisher: Springer Science & Business Media

Published: 2007-09-04

Total Pages: 337

ISBN-13: 1402063776

DOWNLOAD EBOOK

The essential aim of this book is to consider a wide set of problems arising in the mathematical modeling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities and their transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems.


Computational Solid Mechanics

Computational Solid Mechanics

Author: Marco L. Bittencourt

Publisher: CRC Press

Published: 2014-09-19

Total Pages: 670

ISBN-13: 1482246538

DOWNLOAD EBOOK

Presents a Systematic Approach for Modeling Mechanical Models Using Variational Formulation-Uses Real-World Examples and Applications of Mechanical ModelsUtilizing material developed in a classroom setting and tested over a 12-year period, Computational Solid Mechanics: Variational Formulation and High-Order Approximation details an approach that e


Energy Principles and Variational Methods in Applied Mechanics

Energy Principles and Variational Methods in Applied Mechanics

Author: J. N. Reddy

Publisher: John Wiley & Sons

Published: 2017-07-21

Total Pages: 1069

ISBN-13: 1119087392

DOWNLOAD EBOOK

A comprehensive guide to using energy principles and variational methods for solving problems in solid mechanics This book provides a systematic, highly practical introduction to the use of energy principles, traditional variational methods, and the finite element method for the solution of engineering problems involving bars, beams, torsion, plane elasticity, trusses, and plates. It begins with a review of the basic equations of mechanics, the concepts of work and energy, and key topics from variational calculus. It presents virtual work and energy principles, energy methods of solid and structural mechanics, Hamilton’s principle for dynamical systems, and classical variational methods of approximation. And it takes a more unified approach than that found in most solid mechanics books, to introduce the finite element method. Featuring more than 200 illustrations and tables, this Third Edition has been extensively reorganized and contains much new material, including a new chapter devoted to the latest developments in functionally graded beams and plates. Offers clear and easy-to-follow descriptions of the concepts of work, energy, energy principles and variational methods Covers energy principles of solid and structural mechanics, traditional variational methods, the least-squares variational method, and the finite element, along with applications for each Provides an abundance of examples, in a problem-solving format, with descriptions of applications for equations derived in obtaining solutions to engineering structures Features end-of-the-chapter problems for course assignments, a Companion Website with a Solutions Manual, Instructor's Manual, figures, and more Energy Principles and Variational Methods in Applied Mechanics, Third Edition is both a superb text/reference for engineering students in aerospace, civil, mechanical, and applied mechanics, and a valuable working resource for engineers in design and analysis in the aircraft, automobile, civil engineering, and shipbuilding industries.


Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids

Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids

Author: Martin Fuchs

Publisher: Springer

Published: 2007-05-06

Total Pages: 276

ISBN-13: 3540444424

DOWNLOAD EBOOK

Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.


Mechanics of Structures

Mechanics of Structures

Author: Walter Wunderlich

Publisher: CRC Press

Published: 2019-12

Total Pages: 912

ISBN-13: 9780367454609

DOWNLOAD EBOOK

Resoundingly popular in its first edition, the second edition of Mechanics of Structures: Variational and Computational Methods promises to be even more so, with broader coverage, expanded discussions, and a streamlined presentation. The authors begin by describing the behavior of deformable solids through the differential equations for the strength of materials and the theory of elasticity. They next introduce variational principles, including mixed or generalized principles, and derive integral forms of the governing equations. Discussions then move to computational methods, including the finite element method, and these are developed to solve the differential and integral equations. New in the second edition: A one-dimensional introduction to the finite element method, complete with illustrations of numerical mesh refinement Expansion of the use of Galerkin's method. Discussion of recent developments in the theory of bending and torsion of thin-walled beams. An appendix summarizing the fundamental equations in differential and variational form Completely new treatment of stability, including detailed examples Discussion of the principal values of geometric properties and stresses Additional exercises As a textbook or as a reference, Mechanics of Structures builds a unified, variational foundation for structure mechanics, which in turn forms the basis for the computational solid mechanics so essential to modern engineering.


Introduction to the Variational Formulation in Mechanics

Introduction to the Variational Formulation in Mechanics

Author: Edgardo O. Taroco

Publisher: John Wiley & Sons

Published: 2020-02-25

Total Pages: 606

ISBN-13: 1119600901

DOWNLOAD EBOOK

Introduces readers to the fundamentals and applications of variational formulations in mechanics Nearly 40 years in the making, this book provides students with the foundation material of mechanics using a variational tapestry. It is centered around the variational structure underlying the Method of Virtual Power (MVP). The variational approach to the modeling of physical systems is the preferred approach to address complex mathematical modeling of both continuum and discrete media. This book provides a unified theoretical framework for the construction of a wide range of multiscale models. Introduction to the Variational Formulation in Mechanics: Fundamentals and Applications enables readers to develop, on top of solid mathematical (variational) bases, and following clear and precise systematic steps, several models of physical systems, including problems involving multiple scales. It covers: Vector and Tensor Algebra; Vector and Tensor Analysis; Mechanics of Continua; Hyperelastic Materials; Materials Exhibiting Creep; Materials Exhibiting Plasticity; Bending of Beams; Torsion of Bars; Plates and Shells; Heat Transfer; Incompressible Fluid Flow; Multiscale Modeling; and more. A self-contained reader-friendly approach to the variational formulation in the mechanics Examines development of advanced variational formulations in different areas within the field of mechanics using rather simple arguments and explanations Illustrates application of the variational modeling to address hot topics such as the multiscale modeling of complex material behavior Presentation of the Method of Virtual Power as a systematic tool to construct mathematical models of physical systems gives readers a fundamental asset towards the architecture of even more complex (or open) problems Introduction to the Variational Formulation in Mechanics: Fundamentals and Applications is a ideal book for advanced courses in engineering and mathematics, and an excellent resource for researchers in engineering, computational modeling, and scientific computing.