Variance-Constrained Multi-Objective Stochastic Control and Filtering

Variance-Constrained Multi-Objective Stochastic Control and Filtering

Author: Lifeng Ma

Publisher: John Wiley & Sons

Published: 2015-04-24

Total Pages: 320

ISBN-13: 1118929470

DOWNLOAD EBOOK

Unifies existing and emerging concepts concerning multi-objective control and stochastic control with engineering-oriented phenomena Establishes a unified theoretical framework for control and filtering problems for a class of discrete-time nonlinear stochastic systems with consideration to performance Includes case studies of several nonlinear stochastic systems Investigates the phenomena of incomplete information, including missing/degraded measurements, actuator failures and sensor saturations Considers both time-invariant systems and time-varying systems Exploits newly developed techniques to handle the emerging mathematical and computational challenges


Nonlinear Control and Filtering for Stochastic Networked Systems

Nonlinear Control and Filtering for Stochastic Networked Systems

Author: Lifeng Ma

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 243

ISBN-13: 0429761937

DOWNLOAD EBOOK

In this book, control and filtering problems for several classes of stochastic networked systems are discussed. In each chapter, the stability, robustness, reliability, consensus performance, and/or disturbance attenuation levels are investigated within a unified theoretical framework. The aim is to derive the sufficient conditions such that the resulting systems achieve the prescribed design requirements despite all the network-induced phenomena. Further, novel notions such as randomly occurring sensor failures and consensus in probability are discussed. Finally, the theories/techniques developed are applied to emerging research areas. Key Features Unifies existing and emerging concepts concerning stochastic control/filtering and distributed control/filtering with an emphasis on a variety of network-induced complexities Includes concepts like randomly occurring sensor failures and consensus in probability (with respect to time-varying stochastic multi-agent systems) Exploits the recursive linear matrix inequality approach, completing the square method, Hamilton-Jacobi inequality approach, and parameter-dependent matrix inequality approach to handle the emerging mathematical/computational challenges Captures recent advances of theories, techniques, and applications of stochastic control as well as filtering from an engineering-oriented perspective Gives simulation examples in each chapter to reflect the engineering practice


Networked Nonlinear Stochastic Time-Varying Systems

Networked Nonlinear Stochastic Time-Varying Systems

Author: Hongli Dong

Publisher: CRC Press

Published: 2021-09-09

Total Pages: 278

ISBN-13: 1000433722

DOWNLOAD EBOOK

Networked Non-linear Stochastic Time-Varying Systems: Analysis and Synthesis copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities. Divided into three parts, the book discusses the finite-horizon filtering, fault estimation and reliable control, and randomly occurring nonlinearities/uncertainties followed by designing of distributed state and fault estimators, and distributed filters. The third part includes problems of variance-constrained H∞ state estimation, partial-nodes-based state estimation and recursive filtering for nonlinear time-varying complex networks with randomly varying topologies, and random coupling strengths. Offers a comprehensive treatment of the topics related to Networked Nonlinear Stochastic Time-Varying Systems with rigorous math foundation and derivation Unifies existing and emerging concepts concerning control/filtering/estimation and distributed filtering Provides a series of latest results by drawing on the conventional theories of systems science, control engineering and signal processing Deal with practical engineering problems such as event triggered H∞ filtering, non-fragile distributed estimation, recursive filtering, set-membership filtering Demonstrates illustrative examples in each chapter to verify the correctness of the proposed results This book is aimed at engineers, mathematicians, scientists, and upper-level students in the fields of control engineering, signal processing, networked control systems, robotics, data analysis, and automation.


Formation Control of Multi-Agent Systems

Formation Control of Multi-Agent Systems

Author: Marcio de Queiroz

Publisher: John Wiley & Sons

Published: 2019-04-08

Total Pages: 204

ISBN-13: 1118887441

DOWNLOAD EBOOK

A comprehensive guide to formation control of multi-agent systems using rigid graph theory This book is the first to provide a comprehensive and unified treatment of the subject of graph rigidity-based formation control of multi-agent systems. Such systems are relevant to a variety of emerging engineering applications, including unmanned robotic vehicles and mobile sensor networks. Graph theory, and rigid graphs in particular, provides a natural tool for describing the multi-agent formation shape as well as the inter-agent sensing, communication, and control topology. Beginning with an introduction to rigid graph theory, the contents of the book are organized by the agent dynamic model (single integrator, double integrator, and mechanical dynamics) and by the type of formation problem (formation acquisition, formation manoeuvring, and target interception). The book presents the material in ascending level of difficulty and in a self-contained manner; thus, facilitating reader understanding. Key features: Uses the concept of graph rigidity as the basis for describing the multi-agent formation geometry and solving formation control problems. Considers different agent models and formation control problems. Control designs throughout the book progressively build upon each other. Provides a primer on rigid graph theory. Combines theory, computer simulations, and experimental results. Formation Control of Multi-Agent Systems: A Graph Rigidity Approach is targeted at researchers and graduate students in the areas of control systems and robotics. Prerequisite knowledge includes linear algebra, matrix theory, control systems, and nonlinear systems.


Finite-Time Stability: An Input-Output Approach

Finite-Time Stability: An Input-Output Approach

Author: Francesco Amato

Publisher: John Wiley & Sons

Published: 2018-07-19

Total Pages: 188

ISBN-13: 1119140560

DOWNLOAD EBOOK

Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.


Multi-Objective Optimization System Designs and Their Applications

Multi-Objective Optimization System Designs and Their Applications

Author: Bor-Sen Chen

Publisher: CRC Press

Published: 2023-12-05

Total Pages: 292

ISBN-13: 1000999521

DOWNLOAD EBOOK

This book introduces multi-objective design methods to solve multi-objective optimization problems (MOPs) of linear/nonlinear dynamic systems under intrinsic random fluctuation and external disturbance. The MOPs of multiple targets for systems are all transformed into equivalent linear matrix inequality (LMI)-constrained MOPs. Corresponding reverse-order LMI-constrained multi-objective evolution algorithms are introduced to solve LMI-constrained MOPs using MATLAB®. All proposed design methods are based on rigorous theoretical results, and their applications are focused on more practical engineering design examples. Features: Discusses multi-objective optimization from an engineer’s perspective. Contains the theoretical design methods of multi-objective optimization schemes. Includes a wide spectrum of recent research topics in control design, especially for stochastic mean field diffusion problems. Covers practical applications in each chapter, like missile guidance design, economic and financial systems, power control tracking, minimization design in communication, and so forth. Explores practical multi-objective optimization design examples in control, signal processing, communication, and cyber-financial systems. This book is aimed at researchers and graduate students in electrical engineering, control design, and optimization.


Filter-Based Fault Diagnosis and Remaining Useful Life Prediction

Filter-Based Fault Diagnosis and Remaining Useful Life Prediction

Author: Yong Zhang

Publisher: CRC Press

Published: 2023-02-10

Total Pages: 290

ISBN-13: 1000835944

DOWNLOAD EBOOK

This book unifies existing and emerging concepts concerning state estimation, fault detection, fault isolation and fault estimation on industrial systems with an emphasis on a variety of network-induced phenomena, fault diagnosis and remaining useful life for industrial equipment. It covers state estimation/monitor, fault diagnosis and remaining useful life prediction by drawing on the conventional theories of systems science, signal processing and machine learning. Features: Unifies existing and emerging concepts concerning robust filtering and fault diagnosis with an emphasis on a variety of network-induced complexities. Explains theories, techniques, and applications of state estimation as well as fault diagnosis from an engineering-oriented perspective. Provides a series of latest results in robust/stochastic filtering, multidate sample, and time-varying system. Captures diagnosis (fault detection, fault isolation and fault estimation) for time-varying multi-rate systems. Includes simulation examples in each chapter to reflect the engineering practice. This book aims at graduate students, professionals and researchers in control science and application, system analysis, artificial intelligence, and fault diagnosis.


Event-Trigger Dynamic State Estimation for Practical WAMS Applications in Smart Grid

Event-Trigger Dynamic State Estimation for Practical WAMS Applications in Smart Grid

Author: Zhen Li

Publisher: Springer Nature

Published: 2020-06-03

Total Pages: 294

ISBN-13: 3030456587

DOWNLOAD EBOOK

This book describes how dynamic state estimation application in wide-area measurement systems (WAMS) are crucial for power system reliability, to acquire precisely power system dynamics. The event trigger DSE techniques described by the authors provide a design balance between the communication rate and estimation performance, by selectively sending the innovational data. The discussion also includes practical problems for smart grid applications, such as the non-Gaussian process/measurement noise, packet dropout, computation burden of accurate DSE, robustness to the system variation, etc. Readers will learn how the event trigger DSE can facilitate the effective reduction of communication rates, with guaranteed accuracy under a variety of practical conditions in smart grid applications.


26th European Symposium on Computer Aided Process Engineering

26th European Symposium on Computer Aided Process Engineering

Author:

Publisher: Elsevier

Published: 2016-06-17

Total Pages: 2482

ISBN-13: 0444634444

DOWNLOAD EBOOK

26th European Symposium on Computer Aided Process Engineering contains the papers presented at the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event held at Portorož Slovenia, from June 12th to June 15th, 2016. Themes discussed at the conference include Process-product Synthesis, Design and Integration, Modelling, Numerical analysis, Simulation and Optimization, Process Operations and Control and Education in CAPE/PSE. Presents findings and discussions from the 26th European Society of Computer-Aided Process Engineering (ESCAPE) Event


ROBOT2022: Fifth Iberian Robotics Conference

ROBOT2022: Fifth Iberian Robotics Conference

Author: Danilo Tardioli

Publisher: Springer Nature

Published: 2022-11-18

Total Pages: 616

ISBN-13: 3031210654

DOWNLOAD EBOOK

This book contains a selection of papers accepted for presentation and discussion at ROBOT 2022—Fifth Iberian Robotics Conference, held in Zaragoza, Spain, on November 23-25, 2022. ROBOT 2022 is part of a series of conferences that are a joint organization of SEIDROB—Sociedad Española para la Investigación y Desarrollo en Robótica/Spanish Society for Research and Development in Robotics, and SPR—Sociedade Portuguesa de Robótica/Portuguese Society for Robotic. ROBOT 2022 builds upon several previous successful events, including three biennial workshops and the four previous editions of the Iberian Robotics Conference, and is focused on presenting the research and development of new applications, on the field of Robotics, in the Iberian Peninsula, although open to research and delegates from other countries. ROBOT 2022 featured four plenary talks on state-of-the-art subjects on robotics and 15 special sessions, plus a main/general robotics track. In total, after a careful review process, 98 high-quality papers were selected for publication, with a total of 219 unique authors, from 22 countries.