Laboratory Validation of an Endurance Limit for Asphalt Pavements

Laboratory Validation of an Endurance Limit for Asphalt Pavements

Author: Matthew W. Witczak

Publisher:

Published: 2013

Total Pages: 26

ISBN-13: 9780309283663

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Report 762: Laboratory Validation of an Endurance Limit for Asphalt Pavements presents models for the hot-mix asphalt fatigue endurance limit that are responsive to asphalt binder and mixture properties and healing between load cycles and are suitable for incorporation as algorithms in Pavement Mechanistic-Empirical Design and other design methods."--Publisher information.


Integrated Predictive Model for Healing and Fatigue Endurance Limit for Asphalt Concrete

Integrated Predictive Model for Healing and Fatigue Endurance Limit for Asphalt Concrete

Author: Mena Souliman

Publisher:

Published: 2012

Total Pages: 235

ISBN-13:

DOWNLOAD EBOOK

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA due to healing that occurs during the rest periods between loading cycles. Relating healing to endurance limit makes this procedure unique compared to previous research projects that investigated these concepts separately. An extensive laboratory testing program, including 468 beam tests, was conducted according to AASHTO T321-03 test procedure. Six factors that affect the fatigue response of HMA were evaluated: binder type, binder content, air voids, test temperature, rest period and applied strain. The endurance limit was determined when no accumulated damage occurred indicating complete healing. Based on the test results, a first generation predictive model was developed to relate stiffness ratio to material properties. A second generation stiffness ratio model was also developed by replacing four factors (binder type, binder content, air voids, and temperature) with the initial stiffness of the mixture, which is a basic material property. The model also accounts for the nonlinear effects of the rest period and the applied strain on the healing and endurance limit. A third generation model was then developed by incorporation the number of loading cycles at different locations along the fatigue degradation curve for each test in order to account for the nonlinearity between stiffness ratio and loading cycles. In addition to predicting endurance limit, the model has the ability to predict the number of cycles to failure at any rest period and stiffness combination. The model was used to predict fatigue relationship curves for tests with rest period and determining the K1, K2, and K3 fatigue cracking coefficients. The three generation models predicted close endurance limit values ranging from 22 to 204 micro strains. After developing the third generation stiffness ratio model, the predicted endurance limit values were integrated in the strain-Nf fatigue relationships as a step toward incorporating the endurance limit in the MEPDG software. The results of this study can be used to design perpetual pavements that can sustain a large number of loads if traffic volumes and vehicle weights are controlled.


Semiconductor Laser Theory

Semiconductor Laser Theory

Author: Prasanta Kumar Basu

Publisher: CRC Press

Published: 2015-07-16

Total Pages: 308

ISBN-13: 0415643317

DOWNLOAD EBOOK

This book provides the reader with a comprehensive background of semiconductor lasers. It covers their structure, materials, operating principles supported by proper theory, and light power output, as well as conversion efficiency and how frequently the devices can be switched on and off. It also discusses the different lasers working at different wavelengths, viz, ultraviolet, visible, infrared and mid and far infrared regions of electromagnetic spectrum along with proper structure, materials and theory.


7th RILEM International Conference on Cracking in Pavements

7th RILEM International Conference on Cracking in Pavements

Author: A. Scarpas

Publisher: Springer Science & Business Media

Published: 2012-08-30

Total Pages: 1340

ISBN-13: 9400745664

DOWNLOAD EBOOK

In the recent past, new materials, laboratory and in-situ testing methods and construction techniques have been introduced. In addition, modern computational techniques such as the finite element method enable the utilization of sophisticated constitutive models for realistic model-based predictions of the response of pavements. The 7th RILEM International Conference on Cracking of Pavements provided an international forum for the exchange of ideas, information and knowledge amongst experts involved in computational analysis, material production, experimental characterization, design and construction of pavements. All submitted contributions were subjected to an exhaustive refereed peer review procedure by the Scientific Committee, the Editors and a large group of international experts in the topic. On the basis of their recommendations, 129 contributions which best suited the goals and the objectives of the Conference were chosen for presentation and inclusion in the Proceedings. The strong message that emanates from the accepted contributions is that, by accounting for the idiosyncrasies of the response of pavement engineering materials, modern sophisticated constitutive models in combination with new experimental material characterization and construction techniques provide a powerful arsenal for understanding and designing against the mechanisms and the processes causing cracking and pavement response deterioration. As such they enable the adoption of truly "mechanistic" design methodologies. The papers represent the following topics: Laboratory evaluation of asphalt concrete cracking potential; Pavement cracking detection; Field investigation of pavement cracking; Pavement cracking modeling response, crack analysis and damage prediction; Performance of concrete pavements and white toppings; Fatigue cracking and damage characterization of asphalt concrete; Evaluation of the effectiveness of asphalt concrete modification; Crack growth parameters and mechanisms; Evaluation, quantification and modeling of asphalt healing properties; Reinforcement and interlayer systems for crack mitigation; Thermal and low temperature cracking of pavements; and Cracking propensity of WMA and recycled asphalts.


Laboratory Validation of an Endurance Limit for Asphalt Pavements

Laboratory Validation of an Endurance Limit for Asphalt Pavements

Author: Matthew W. Witczak

Publisher:

Published: 2013

Total Pages: 44

ISBN-13: 9780309283663

DOWNLOAD EBOOK

"TRB's National Cooperative Highway Research Program (NCHRP) Report 762: Laboratory Validation of an Endurance Limit for Asphalt Pavements presents models for the hot-mix asphalt fatigue endurance limit that are responsive to asphalt binder and mixture properties and healing between load cycles and are suitable for incorporation as algorithms in Pavement Mechanistic-Empirical Design and other design methods."--Publisher information.