Using Mathematica for Quantum Mechanics

Using Mathematica for Quantum Mechanics

Author: Roman Schmied

Publisher: Springer Nature

Published: 2019-09-28

Total Pages: 202

ISBN-13: 9811375887

DOWNLOAD EBOOK

This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.


Using Mathematica for Quantum Mechanics

Using Mathematica for Quantum Mechanics

Author: Roman Schmied

Publisher: Springer

Published: 2020-10-17

Total Pages: 193

ISBN-13: 9789811375903

DOWNLOAD EBOOK

This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.


Mathematica for Theoretical Physics

Mathematica for Theoretical Physics

Author: Gerd Baumann

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 407

ISBN-13: 0387251138

DOWNLOAD EBOOK

Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user’s purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.


Quantum Mechanics for Mathematicians

Quantum Mechanics for Mathematicians

Author: Leon Armenovich Takhtadzhi͡an

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 410

ISBN-13: 0821846302

DOWNLOAD EBOOK

Presents a comprehensive treatment of quantum mechanics from a mathematics perspective. Including traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin.


Quantum Methods with Mathematica®

Quantum Methods with Mathematica®

Author: James F. Feagin

Publisher: Springer Science & Business Media

Published: 2002-01-08

Total Pages: 508

ISBN-13: 9780387953656

DOWNLOAD EBOOK

Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.


Quantum Mechanics Using Computer Algebra

Quantum Mechanics Using Computer Algebra

Author: Willi-Hans Steeb

Publisher: World Scientific

Published: 1994

Total Pages: 208

ISBN-13: 9789810217709

DOWNLOAD EBOOK

Solving problems in quantum mechanics is an essential skill and research activity for scientists, engineers and others. Nowadays the labor of scientific computation has been greatly eased by the advent of computer algebra packages. These do not merely perform number-crunching tasks, but enable users to manipulate algebraic expressions and equations symbolically. For example, differentiation and integration can now be carried out algebraically by the computer.This book collects standard and advanced methods in quantum mechanics and implements them using REDUCE, a popular computer algebra package. Throughout, sample programs and their output have been displayed alongside explanatory text, making the book easy to follow. Selected problems have also been implemented using two other popular packages, MATHEMATICA and MAPLE, and in the object-oriented programming language C++.Besides standard quantum mechanical techniques, modern developments in quantum theory are also covered. These include Fermi and Bose Operators, coherent states, gauge theory and quantum groups. All the special functions relevant to quantum mechanics (Hermite, Chebyshev, Legendre and more) are implemented.The level of presentation is such that one can get a sound grasp of computational techniques early on in one's scientific education. A careful balance is struck between practical computation and the underlying mathematical concepts, making the book well-suited for use with quantum mechanics courses.


Mathematica for Physics

Mathematica for Physics

Author: Robert L. Zimmerman

Publisher: Addison-Wesley

Published: 2002

Total Pages: 682

ISBN-13:

DOWNLOAD EBOOK

An appropriate supplement for any undergraduate or graduate course in physics, Mathematica ̈ for Physics uses the power of Mathematica ̈ to visualize and display physics concepts and generate numerical and graphical solutions to physics problems. Throughout the book, the complexity of both physics and Mathematica ̈ is systematically extended to broaden the range of problems that can be solved.


Visual Quantum Mechanics

Visual Quantum Mechanics

Author: Bernd Thaller

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 283

ISBN-13: 0387227709

DOWNLOAD EBOOK

"Visual Quantum Mechanics" uses the computer-generated animations found on the accompanying material on Springer Extras to introduce, motivate, and illustrate the concepts explained in the book. While there are other books on the market that use Mathematica or Maple to teach quantum mechanics, this book differs in that the text describes the mathematical and physical ideas of quantum mechanics in the conventional manner. There is no special emphasis on computational physics or requirement that the reader know a symbolic computation package. Despite the presentation of rather advanced topics, the book requires only calculus, making complicated results more comprehensible via visualization. The material on Springer Extras provides easy access to more than 300 digital movies, animated illustrations, and interactive pictures. This book along with its extra online materials forms a complete introductory course on spinless particles in one and two dimensions.


A Mathematical Primer on Quantum Mechanics

A Mathematical Primer on Quantum Mechanics

Author: Alessandro Teta

Publisher: Springer

Published: 2018-04-17

Total Pages: 265

ISBN-13: 3319778935

DOWNLOAD EBOOK

This book offers a rigorous yet elementary approach to quantum mechanics that will meet the needs of Master’s-level Mathematics students and is equally suitable for Physics students who are interested in gaining a deeper understanding of the mathematical structure of the theory. Throughout the coverage, which is limited to single-particle quantum mechanics, the focus is on formulating theory and developing applications in a mathematically precise manner. Following a review of selected key concepts in classical physics and the historical background, the basic elements of the theory of operators in Hilbert spaces are presented and used to formulate the rules of quantum mechanics. The discussion then turns to free particles, harmonic oscillators, delta potential, and hydrogen atoms, providing rigorous proofs of the corresponding dynamical properties. Starting from an analysis of these applications, readers are subsequently introduced to more advanced topics such as the classical limit, scattering theory, and spectral analysis of Schrödinger operators. The main content is complemented by numerous exercises that stimulate interactive learning and help readers check their progress.


Mathematical Concepts of Quantum Mechanics

Mathematical Concepts of Quantum Mechanics

Author: Stephen J. Gustafson

Publisher: Springer Science & Business Media

Published: 2011-09-24

Total Pages: 380

ISBN-13: 3642218660

DOWNLOAD EBOOK

The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.