Teaching with Tasks for Effective Mathematics Learning

Teaching with Tasks for Effective Mathematics Learning

Author: Peter Sullivan

Publisher: Springer Science & Business Media

Published: 2012-09-12

Total Pages: 214

ISBN-13: 1461446805

DOWNLOAD EBOOK

​This book is about how teachers can use classroom mathematics tasks to support student learning, and presents data on the ways in which teachers used those tasks in a particular research project. It is the product of research findings focusing on teacher practice, teacher learning and knowledge, and student learning. It demonstrates how teachers can use mathematics tasks to promote effective student learning.​


100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection

100 Years of Math Milestones: The Pi Mu Epsilon Centennial Collection

Author: Stephan Ramon Garcia

Publisher: American Mathematical Soc.

Published: 2019-06-13

Total Pages: 597

ISBN-13: 1470436523

DOWNLOAD EBOOK

This book is an outgrowth of a collection of 100 problems chosen to celebrate the 100th anniversary of the undergraduate math honor society Pi Mu Epsilon. Each chapter describes a problem or event, the progress made, and connections to entries from other years or other parts of mathematics. In places, some knowledge of analysis or algebra, number theory or probability will be helpful. Put together, these problems will be appealing and accessible to energetic and enthusiastic math majors and aficionados of all stripes. Stephan Ramon Garcia is WM Keck Distinguished Service Professor and professor of mathematics at Pomona College. He is the author of four books and over eighty research articles in operator theory, complex analysis, matrix analysis, number theory, discrete geometry, and other fields. He has coauthored dozens of articles with students, including one that appeared in The Best Writing on Mathematics: 2015. He is on the editorial boards of Notices of the AMS, Proceedings of the AMS, American Mathematical Monthly, Involve, and Annals of Functional Analysis. He received four NSF research grants as principal investigator and five teaching awards from three different institutions. He is a fellow of the American Mathematical Society and was the inaugural recipient of the Society's Dolciani Prize for Excellence in Research. Steven J. Miller is professor of mathematics at Williams College and a visiting assistant professor at Carnegie Mellon University. He has published five books and over one hundred research papers, most with students, in accounting, computer science, economics, geophysics, marketing, mathematics, operations research, physics, sabermetrics, and statistics. He has served on numerous editorial boards, including the Journal of Number Theory, Notices of the AMS, and the Pi Mu Epsilon Journal. He is active in enrichment and supplemental curricular initiatives for elementary and secondary mathematics, from the Teachers as Scholars Program and VCTAL (Value of Computational Thinking Across Grade Levels), to numerous math camps (the Eureka Program, HCSSiM, the Mathematics League International Summer Program, PROMYS, and the Ross Program). He is a fellow of the American Mathematical Society, an at-large senator for Phi Beta Kappa, and a member of the Mount Greylock Regional School Committee, where he sees firsthand the challenges of applying mathematics.


InfoWorld

InfoWorld

Author:

Publisher:

Published: 1999-07-12

Total Pages: 110

ISBN-13:

DOWNLOAD EBOOK

InfoWorld is targeted to Senior IT professionals. Content is segmented into Channels and Topic Centers. InfoWorld also celebrates people, companies, and projects.


A Basic Course in Partial Differential Equations

A Basic Course in Partial Differential Equations

Author: Qing Han

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 305

ISBN-13: 0821852558

DOWNLOAD EBOOK

This is a textbook for an introductory graduate course on partial differential equations. Han focuses on linear equations of first and second order. An important feature of his treatment is that the majority of the techniques are applicable more generally. In particular, Han emphasizes a priori estimates throughout the text, even for those equations that can be solved explicitly. Such estimates are indispensable tools for proving the existence and uniqueness of solutions to PDEs, being especially important for nonlinear equations. The estimates are also crucial to establishing properties of the solutions, such as the continuous dependence on parameters. Han's book is suitable for students interested in the mathematical theory of partial differential equations, either as an overview of the subject or as an introduction leading to further study.