Structural Optimization

Structural Optimization

Author: William R. Spillers

Publisher: Springer Science & Business Media

Published: 2009-06-10

Total Pages: 304

ISBN-13: 0387958657

DOWNLOAD EBOOK

Structural Optimization is intended to supplement the engineer’s box of analysis and design tools making optimization as commonplace as the finite element method in the engineering workplace. It begins with an introduction to structural optimization and the methods of nonlinear programming such as Lagrange multipliers, Kuhn-Tucker conditions, and calculus of variations. It then discusses solution methods for optimization problems such as the classic method of linear programming which leads to the method of sequential linear programming. It then proposes using sequential linear programming together with the incremental equations of structures as a general method for structural optimization. It is furthermore intended to give the engineer an overview of the field of structural optimization.


Variational Methods for Structural Optimization

Variational Methods for Structural Optimization

Author: Andrej Cherkaev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 561

ISBN-13: 1461211883

DOWNLOAD EBOOK

This book bridges a gap between a rigorous mathematical approach to variational problems and the practical use of algorithms of structural optimization in engineering applications. The foundations of structural optimization are presented in sufficiently simple form as to make them available for practical use.


Topology Optimization

Topology Optimization

Author: Martin Philip Bendsoe

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 381

ISBN-13: 3662050862

DOWNLOAD EBOOK

The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.


Structural Design Applications of Mathematical Programming Techniques

Structural Design Applications of Mathematical Programming Techniques

Author: North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Structures and Materials Panel

Publisher:

Published: 1971

Total Pages: 212

ISBN-13:

DOWNLOAD EBOOK

The document describes the present state of development of the use of mathematical programming techniques in the optimum design of aerospace and similar structures. Although optimization with respect to cost is considered when possible, the main emphasis is on the minimization of weight, due to the overwhelming importance of this parameter in aerospace applications, and also due to the fact that it is one of the few merit functions that can be defined with reasonable precision. The use of mathematical programming techniques in the selection of materials is also discussed to the limited extent meaningful at the present time. (Author).


Structural Optimization

Structural Optimization

Author: M. Save

Publisher: Springer Science & Business Media

Published: 2013-03-08

Total Pages: 340

ISBN-13: 146157921X

DOWNLOAD EBOOK

After the IUTAM Symposium on Optimization in Structural Design held in Warsaw in 1973, it was clear to me that the time had come for organizing into a consistent body of thought the enormous quantity of results obtained in this domain, studied from so many different points of view, with so many different methods, and at so many levels of practical applicability. My colleague and friend Gianantonnio Sacchi from Milan and I met with Professor Prager in Savognin in July 1974, where I submitted to them my first ideas for a treatise on structural optimization: It should cover the whole domain from basic theory to practical applications, and deal with various materials, various types of structures, various functions required of the structures, and various types of cost . . Obviously, this was to be a team effort, to total three or four volumes, to be written in a balanced manner as textbooks and handbooks. Nothing similar existed at that time, and, indeed, nothing has been published to date. Professor Prager was immedi ately in favor of such a project. He agreed to write a first part on optimality criteria with me and to help me in the general organization of the series. Since Professor Sacchi was willing to write the text on variational methods, it remained to find authors for parts on the mathematical programming approach to structural optimization (and, more generally, on numerical methods) and on practical optimal design procedures in metal and concrete.


Software Systems for Structural Optimization

Software Systems for Structural Optimization

Author: H.R. Hörnlein

Publisher: Birkhäuser

Published: 2013-03-07

Total Pages: 287

ISBN-13: 3034885539

DOWNLOAD EBOOK

Herbert Hornlein, Klaus Schittkowski The finite element method (FEM) has been used successfully for many years to simulate and analyse mechanical structural problems. The results are accepted or rejected by means of comparison of state variables (stresses, displacements, natural frequencies etc.) and user requirements. In further analyses the design variables will be updated until the user specifications are met and the design is feasible. This is the primary aim of the design process. On this set of feasible designs, the additional requirement given by an objective function (e.g. weight, stiffness, efficiency, etc.) defines the structural optimization problem. In recent years more and more finite element based analysis systems were ex tended and offer now optimization modules. They proceed from the design model as defined for structural analysis, to perform an internal adaption of design pa rameters based on formal mathematical methods. Despite of many common features, there are significant differences in the selected optimization strategy, the current implementation and the numerical results.