Energy Efficient Vehicles

Energy Efficient Vehicles

Author: Varun Pratap Singh

Publisher: CRC Press

Published: 2024-04-29

Total Pages: 350

ISBN-13: 1040009107

DOWNLOAD EBOOK

The text discusses energy-efficient vehicles as an essential element of sustainable transportation. The text highlights the social, economic, and environmental benefits associated with energy-efficient automobiles, which effectively solve the issue of greenhouse gas emissions, improve air quality, boost energy security, and promote zero-emission. The energy-efficient technologies for transportation, accessibility and safety of the transport system, environmental footprint, health impact, economic development, and social growth are the central theme of the book. It further presents future integrated mobility-energy systems and sustainability indicators. This book: Examines policies, challenges, and the latest developments in the field of sustainable mobility. Discusses the latest advances in the field of energy storage systems, batteries, image processing, obstacle identification, and automatic gear trains. Highlights the safety, security, and risk management related to sustainable transportation, covering zero emissions and sustainability indicators. Presents electric vehicle grid integration and infrastructure for e-vehicle charging. Aims to provide an overview of various aspects of EV, HEV, ITS, and vehicular network deployment design, encompassing the technological advancements, challenges, and opportunities associated with this rapidly evolving field. Understanding the transportation needs and preferences of youth populations in shaping transportation policy and promoting sustainable urban development to design transportation systems that are efficient, equitable, and environmentally sustainable. Synergize exploration related to the various properties and functionalities through extensive theoretical and numerical modeling present in the energy sector. This book is primarily written for senior undergraduate, graduate students, and academic researchers in fields including mechanical engineering, industrial engineering, automotive engineering, manufacturing engineering, and environmental engineering.


Electric and Hybrid Vehicles

Electric and Hybrid Vehicles

Author: Gianfranco Pistoia

Publisher: Elsevier

Published: 2010-07-27

Total Pages: 671

ISBN-13: 0444535667

DOWNLOAD EBOOK

Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market reviews the performance, cost, safety, and sustainability of battery systems for hybrid electric vehicles (HEVs) and electric vehicles (EVs), including nickel-metal hydride batteries and Li-ion batteries. Throughout this book, especially in the first chapters, alternative vehicles with different power trains are compared in terms of lifetime cost, fuel consumption, and environmental impact. The emissions of greenhouse gases are particularly dealt with. The improvement of the battery, or fuel cell, performance and governmental incentives will play a fundamental role in determining how far and how substantial alternative vehicles will penetrate into the market. An adequate recharging infrastructure is of paramount importance for the diffusion of vehicles powered by batteries and fuel cells, as it may contribute to overcome the so-called range anxiety."" Thus, proposed battery charging techniques are summarized and hydrogen refueling stations are described. The final chapter reviews the state of the art of the current models of hybrid and electric vehicles along with the powertrain solutions adopted by the major automakers. - Contributions from the worlds leading industry and research experts - Executive summaries of specific case studies - Information on basic research and application approaches


Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles

Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles

Author: Sheldon S. Williamson

Publisher: Springer Science & Business Media

Published: 2013-10-24

Total Pages: 263

ISBN-13: 1461477115

DOWNLOAD EBOOK

This book addresses the practical issues for commercialization of current and future electric and plug-in hybrid electric vehicles (EVs/PHEVs). The volume focuses on power electronics and motor drives based solutions for both current as well as future EV/PHEV technologies. Propulsion system requirements and motor sizing for EVs is also discussed, along with practical system sizing examples. PHEV power system architectures are discussed in detail. Key EV battery technologies are explained as well as corresponding battery management issues are summarized. Advanced power electronic converter topologies for current and future charging infrastructures will also be discussed in detail. EV/PHEV interface with renewable energy is discussed in detail, with practical examples.


Industrial Applications of Batteries

Industrial Applications of Batteries

Author: Michel Broussely

Publisher: Elsevier

Published: 2007-02-13

Total Pages: 800

ISBN-13: 0080471277

DOWNLOAD EBOOK

Industrial Applications of Batteries looks at both the applications and the batteries and covers the relevant scientific and technological features. Presenting large batteries for stationary applications, e.g. energy storage, and also batteries for hybrid vehicles or different tools. The important aerospace field is covered both in connection with satellites and space missions. Examples of applications include, telecommunications, uninterruptible power supplies, systems for safety/alarms, car accessories, toll collection, asset tracking systems, medical equipment, and oil drilling.The first chapter on applications deals with electric and hybrid vehicles. Four chapters are devoted to stationary applications, i.e. energy storage (from the electric grid or solar/wind energy), load levelling, telecommunications, uninterruptible power supplies, back-up for safety/alarms. Battery management by intelligent systems and prediction of battery life are dealt with in a dedicated chapter. The topic of used battery collection and recycling, with the description of specific treatments for the different systems, is also extensively treated in view of its environmental relevance. Finally, the world market of these batteries is presented, with detailed figures for the various applications.* Updated and full overview of the power sources for industries* Written by leading scientists in their fields * Well balanced in terms of scientific and technical information


Electric Systems for Transportation

Electric Systems for Transportation

Author: Maria Carmen Falvo

Publisher: MDPI

Published: 2021-09-02

Total Pages: 690

ISBN-13: 3036504885

DOWNLOAD EBOOK

Transportation systems play a major role in the reduction of energy consumptions and environmental impact all over the world. The significant amount of energy of transport systems forces the adoption of new solutions to ensure their performance with energy-saving and reduced environmental impact. In this context, technologies and materials, devices and systems, design methods, and management techniques, related to the electrical power systems for transportation are continuously improving thanks to research activities. The main common challenge in all the applications concerns the adoption of innovative solutions that can improve existing transportation systems in terms of efficiency and sustainability.


Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles

Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles

Author: Ottorino Veneri

Publisher: Springer

Published: 2016-12-30

Total Pages: 323

ISBN-13: 3319436511

DOWNLOAD EBOOK

This book outlines issues related to massive integration of electric and plug-in hybrid electric vehicles into power grids. Electricity is becoming the preferred energy vector for the next new generation of road vehicles. It is widely acknowledged that road vehicles based on full electric or hybrid drives can mitigate problems related to fossil fuel dependence. This book explains the emerging and understanding of storage systems for electric and plug-in hybrid vehicles. The recharging stations for these types of vehicles might represent a great advantage for the electric grid by facilitating integration of renewable and distributed energy production. This book presents a broad review from analyzing current literature to on-going research projects about the new power technologies related to the various charging architectures for electric and plug-in hybrid vehicles. Specifically focusing on DC fast charging operations, as well as, grid-connected power converters and the full range of energy storage systems. These key components are analyzed for distributed generation and charging system integration into micro-grids. The authors demonstrate that these storage systems represent effective interfaces for the control and management of renewable and sustainable distributed energy resources. New standards and applications are emerging from micro-grid pilot projects around the world and case studies demonstrate the convenience and feasibility of distributed energy management. The material in this unique volume discusses potential avenues for further research toward achieving more reliable, more secure and cleaner energy.


Power Converters, Drives and Controls for Sustainable Operations

Power Converters, Drives and Controls for Sustainable Operations

Author: S. Ganesh Kumar

Publisher: John Wiley & Sons

Published: 2023-08-01

Total Pages: 836

ISBN-13: 111979191X

DOWNLOAD EBOOK

POWER CONVERTERS, DRIVES AND CONTROLS FOR SUSTAINABLE OPERATIONS Written and edited by a group of experts in the field, this groundbreaking reference work sets the standard for engineers, students, and professionals working with power converters, drives, and controls, offering the scientific community a way towards combating sustainable operations. The future of energy and power generation is complex. Demand is increasing, and the demand for cleaner energy and electric vehicles (EVs) is increasing with it. With this increase in demand comes an increase in the demand for power converters. Part one of this book is on switched-mode converters and deals with the need for power converters, their topologies, principles of operation, their steady-state performance, and applications. Conventional topologies like buck, boost, buck-boost converters, inverters, multilevel inverters, and derived topologies are covered in part one with their applications in fuel cells, photovoltaics (PVs), and EVs. Part two is concerned with electrical machines and converters used for EV applications. Standards for EV, charging infrastructure, and wireless charging methodologies are addressed. The last part deals with the dynamic model of the switched-mode converters. In any DC-DC converter, it is imperative to control the output voltage as desired. Such a control may be achieved in a variety of ways. While several types of control strategies are being evolved, the popular method of control is through the duty cycle of the switch at a constant switching frequency. This part of the book briefly reviews the conventional control theory and builds on the same to develop advanced techniques in the closed-loop control of switch mode power converters (SMPC), such as sliding mode control, passivity-based control, model predictive control (MPC), fuzzy logic control (FLC), and backstepping control. A standard reference work for veteran engineers, scientists, and technicians, this outstanding new volume is also a valuable introduction to new hires and students. Useful to academics, researchers, engineers, students, technicians, and other industry professionals, it is a must-have for any library.


Developing Charging Infrastructure and Technologies for Electric Vehicles

Developing Charging Infrastructure and Technologies for Electric Vehicles

Author: Alam, Mohammad Saad

Publisher: IGI Global

Published: 2021-12-31

Total Pages: 343

ISBN-13: 1799868605

DOWNLOAD EBOOK

The increase in air pollution and vehicular emissions has led to the development of the renewable energy-based generation and electrification of transportation. Further, the electrification shift faces an enormous challenge due to limited driving range, long charging time, and high initial cost of deployment. Firstly, there has been a discussion on renewable energy such as how wind power and solar power can be generated by wind turbines and photovoltaics, respectively, while these are intermittent in nature. The combination of these renewable energy resources with available power generation system will make electric vehicle (EV) charging sustainable and viable after the payback period. Recently, there has also been a significant discussion focused on various EV charging types and the level of power for charging to minimize the charging time. By focusing on both sustainable and renewable energy, as well as charging infrastructures and technologies, the future for EV can be explored. Developing Charging Infrastructure and Technologies for Electric Vehicles reviews and discusses the state of the art in electric vehicle charging technologies, their applications, economic, environmental, and social impact, and integration with renewable energy. This book captures the state of the art in electric vehicle charging infrastructure deployment, their applications, architectures, and relevant technologies. In addition, this book identifies potential research directions and technologies that facilitate insights on EV charging in various charging places such as smart home charging, parking EV charging, and charging stations. This book will be essential for power system architects, mechanics, electrical engineers, practitioners, developers, practitioners, researchers, academicians, and students interested in the problems and solutions to the state-of-the-art status of electric vehicles.