Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries

Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries

Author: Shmelova, Tetiana

Publisher: IGI Global

Published: 2019-10-11

Total Pages: 517

ISBN-13: 1799814173

DOWNLOAD EBOOK

With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.


Pilot's Handbook of Aeronautical Knowledge, 2009

Pilot's Handbook of Aeronautical Knowledge, 2009

Author:

Publisher: Government Printing Office

Published:

Total Pages: 472

ISBN-13: 9780160876110

DOWNLOAD EBOOK

Chapter 1: Introduction to Flying offers a brief history of flight, introduces the history and role of the FAA in civil aviation, FAA Regulations and standards, government references and publications, eligibility for pilot certificates, available routes to flight instructions, the role of the Certificated Flight Instructor (FI) and Designated Pilot Examiner (DPE) in flight training, and Practical Test Standards (PTS). Chapter 2: Aircraft Structure An aircraft is a device that is used, or intended to be used, for flight, according to the current Title 14 of the Code of Federal Regulations (14CFR) Part I. This chapter provides a brief introduction to the structure of aircraft and uses an airplane for most illustrations. Light Sport Aircraft (LSA), such as wight-shift control, balloon, glider, powered parachute, and gyroplane have their own handbooks to include detailed information regarding aerodynamics and control. Chapter 3: Principles of Flight This chapter examines the fundamental physical laws governing the forces acting on an aircraft in flight, and what effect these natural laws and forces have on the performance characteristics of aircraft. To control an aircraft, be it an airplane, helicopter, glider, or balloon, the pilot must understand the principles involved and learn to use or counteract these natural forces. Chapter 4 Aerodynamics of Flight This chapter discusses the aerodynamics of flight – how design, weight, load factors, and gravity affect an aircraft during flight maneuvers. The four forces acting on an aircraft in straight-and-level, unaccelerated flight are thrust, drag, lift, and weight. Chapter 5 Flight Controls This chapter focuses on the flight control systems a pilot uses to control the forces of flight, and the aircraft’s direction and attitude. It should be noted that flight control systems and characteristics can vary greatly depending on the type of aircraft flown. The most basic flight control system designs are mechanical and date to early aircraft. They operate with a collection of mechanical parts such as rods, cables, pulleys, and sometimes chains to transmit the forces of the flight deck controls to the control surfaces. Chapter 6 Aircraft Systems This chapter covers the primary systems found on most aircraft. These include the engine, propeller, induction, ignition, as well as the fuel, lubrication, cooling, electrical , landing gear, and environmental control systems. Chapter 7 Flight Instruments This chapter addresses the pitot-static system and associated instruments, the vacuum system and related instruments, gyroscopic instruments, and the magnetic compass. When a pilot understands how each instrument works and recognizes when an instrument is malfunctioning , he or she can safely utilize the instruments to their fullest potential. Chapter 8 Flight Manuals and Other Documents The chapter covers airplane flight manuals (AFM), the pilot’s operating handbook (POH), and aircraft documents pertaining to ownership, airworthiness, maintenance, and operations with inoperative equipment. Knowledge of these required documents and manuals is essential for a pilot to conduct a safe flight. Chapter 9 Weight and Balance Compliance with the weight and balance limits of any aircraft is critical to flight safety. Operating above the maximum weight limitation compromises the structural integrity of an aircraft and adversely affects its performance. Operations with the center of gravity (CG ) outside the approved limits results in control difficulty. Chapter 10 Aircraft Performance This chapter discusses the factors that affect aircraft performance which include the aircraft weight, atmospheric conditions, runway environment, and the fundamental physical laws governing the forces acting on an aircraft. Chapter 11 Weather Theory This chapter explains basic weather theory and offers pilots background knowledge of weather principles. It is designed to help them gain a good understanding of how weather affects daily flying activities. Understanding the theories behind weather helps a pilot make sound weather decisions based on reports and forecasts obtained from a Flight Service Station (FSS) weather specialist and other aviation weather services. Be it a local flight or a long cross-country flight, decisions based on weather can dramatically affect the safety of the flight. Chapter 12 Aviation Weather Services In aviation, weather service is a combined effort of the National Weather Service (NWS), Federal Aviation Administration (FAA), Department of Defense, DOD), other aviation groups and individuals. While weather forecasts are not 100 percent accurate, meteorologists, through careful scientific study and computer modeling, have the ability to predict weather patterns, trends, and characteristics with increasing accuracy. These reports and forecasts enable pilots to make informed decisions regarding weather and flight safety before and during a flight. Chapter 13 Airport Operations This chapter focuses on airport operations both in the air and on the surface. By adhering to established procedures, both airport operations and safety are enhanced. Chapter 14 Airspace This chapter introduces the various classifications of airspace and provides information on the requirements to operate in such airspace. For further information, consult the AIM and 14 CFR parts 71, 73, and 91. Chapter 15 Navigation This chapter provides an introduction to cross-country flying under visual flight rules (VFR). It contains practical information for planning and executing cross-country flights for the beginning pilot. Chapter 16 Aeromedcial Factors It is important for a pilot to be aware of the mental and physical standards required for the type of flying done. This chapter provides information on medical certification and on a variety of aeromedical factors related to flight activities. Chapter 17 Aeronautical Decision-Making This chapter focuses on helping the pilot improve his or her ADM skills with the goal of mitigating the risk factors associated with flight in both classic and automated aircraft. In the end, the discussion is not so much about aircraft, but about the people who fly them. Includes Appendix with tables of information, a glossary and an index.


Labor Relations in the Aviation and Aerospace Industries

Labor Relations in the Aviation and Aerospace Industries

Author: Robert W. Kaps

Publisher: SIU Press

Published: 2012-04-11

Total Pages: 226

ISBN-13: 0809390027

DOWNLOAD EBOOK

This Study Guide is designed to be used with the textbook Labor Relations in the Aviation and Aerospace Industries. It is intended to assist students in comprehending basic terminology and principles of labor relations and the law, to relate those principles to unique features of the aviation and aerospace industry, and to prepare for the kinds of labor relations–related decisions students will soon be making as aviation professionals, whether in private or public sector employment. It includes review questions, online assignments, supplemental readings, and exercises.


Handbook of Aviation and Space Medicine

Handbook of Aviation and Space Medicine

Author: Nicholas Green

Publisher: CRC Press

Published: 2019-04-18

Total Pages: 438

ISBN-13: 0429664370

DOWNLOAD EBOOK

This highly practical guide is ideal for any medical professional who deals with the aerospace environment or is involved in the healthcare of aircrew or individuals preparing for or returning from aerospace travel. The book covers all the main aspects of aerospace medicine, including the salient physiology and clinical aspects in note form for rapid assimilation, and makes plentiful use of figures, algorithms and tables throughout. Key Features: • Comprehensive covering all aspects of clinical aerospace medicine and relevant physiology • Note-based for rapid reference in the clinical setting • Highly practical with illustrations and tables supporting the text throughout • From a highly experienced international team of editors and contributors • Ideal as a handbook companion, complementing the definitive reference Ernsting’s Aviation and Space Medicine, for use ‘on the go’ The book will be an indispensable companion to all civil and military aviation medicine practitioners including those preparing for professional qualifying examinations, and a useful aid for other physicians with an interest in aviation medicine or who are required to inform patients regularly regarding the likely effects of flight, including family practitioners and hospital doctors, physiologists with an interest in the area and occupational and public health personnel.


Air Carrier MRO Handbook

Air Carrier MRO Handbook

Author: Jack Hessburg

Publisher: McGraw Hill Professional

Published: 2001-01-03

Total Pages: 422

ISBN-13: 9780071379830

DOWNLOAD EBOOK

A-Z fact-packed guide to MRO leadership and training Industry shorthand for maintenance, repair, and overhaul, MRO is the key to air carrier safety and profitability (it could help you see as much as 25% growth over the next 5 years!). Written by Jack Hessburg, the award-winning chief mechanic and developer of the Boeing 777's computerized maintenance system, Air Carrier MRO Handbook fully explains and illustrates MRO in air carrier operations with charts, graphs, forms, tables, data, statistics, and figures -- the most complete and usable collection of MRO data ever assembled. This expert tunes up your knowledge base so you can streamline all phases and facets of operation. This is the resource you need to help your managers, engineers and technicians work within the industry's guidelines and interdependent network to facilitate partnerships, leadership, and profits.