Since their introduction nearly 40 years ago, research on Petri nets has diverged in many different directions. Various classes of Petri net, motivated either by theory or applications, with its own specific features and methods of analysis, have been proposed and studies in depth. These successful developments have led to a very heterogeneous landscape of diverse models, and this, in turn, has stimulated research on concepts and approaches that contribute to unifying and structuring the diverse landscape. This state-of-the-art survey presents the most relevant approaches to unifying Petri nets in a systematic and coherent way. The 14 chapters written by leading researchers are organized in topical sections on application-oriented approaches, unifying frameworks, and theoretical approaches.
World renowned leaders in the field provide an accessible introduction to the use of Generalized Stochastic Petri Nets (GSPNs) for the performance analysis of diverse distributed systems. Divided into two parts, it begins with a summary of the major results in GSPN theory. The second section is devoted entirely to application examples which demonstrate how GSPN methodology can be used in different arenas. A simple version of the software tool used to analyse GSPN models is included with the book and a concise manual for its use is presented in the later chapters.
This book is a comprehensive, systematic survey of the synthesis problem, and of region theory which underlies its solution, covering the related theory, algorithms, and applications. The authors focus on safe Petri nets and place/transition nets (P/T-nets), treating synthesis as an automated process which, given behavioural specifications or partial specifications of a system to be realized, decides whether the specifications are feasible, and then produces a Petri net realizing them exactly, or if this is not possible produces a Petri net realizing an optimal approximation of the specifications. In Part I the authors introduce elementary net synthesis. In Part II they explain variations of elementary net synthesis and the unified theory of net synthesis. The first three chapters of Part III address the linear algebraic structure of regions, synthesis of P/T-nets from finite initialized transition systems, and the synthesis of unbounded P/T-nets. Finally, the last chapter in Part III and the chapters in Part IV cover more advanced topics and applications: P/T-net with the step firing rule, extracting concurrency from transition systems, process discovery, supervisory control, and the design of speed-independent circuits. Most chapters conclude with exercises, and the book is a valuable reference for both graduate students of computer science and electrical engineering and researchers and engineers in this domain.
Petri Nets were introduced and still successfully used to analyze and model discrete event systems especially in engineering and computer sciences such as in automatic control. Recently this discrete Petri Nets formalism was successfully extended to continuous and hybrid systems. This monograph presents a well written and clearly organized introduction in the standard methods of Petri Nets with the aim to reach an accurate understanding of continuous and hybrid Petri Nets, while preserving the consistency of basic concepts throughout the book. The book is a monograph as well as a didactic tool which is easy to understand due to many simple solved examples and detailed figures. In its second completely reworked edition various sections, concepts and recently developed algorithms are added as well as additional examples/exercises.
Using formal methods for the specification and verification of hardware and software systems is becoming increasingly important as systems increase in size and complexity. The aim of the book is to illustrate progress in formal methods based on Petri net formalisms. It presents both practical and theoretical foundations for the use of Petri nets in complex system engineering tasks. In doing so it bridges the gap between Petri nets and the systems modeling and implementation process. It contains a collection of examples arising from different fields, such as flexible manufacturing, telecommunication and workflow management systems.
The two-volume set originates from the Advanced Course on Petri Nets held in Dagstuhl, Germany in September 1996; beyond the lectures given there, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. Together with its companion volume "Lectures on Petri Nets II: Applications" this book is the actual reference for the area and addresses professionals, students, lecturers, and researchers who are - interested in systems design and would like to learn to use Petri nets familiar with subareas of the theory or its applications and wish to view the whole area - interested in learning about recent results presented within a unified framework - planning to apply Petri nets in practical situations - interested in the relationship of Petri nets to other models of concurrent systems.
This book presents the definition, validation and application of a selected set of Petri nets. It first introduces the basic models including time and stochastic extensions, in particular place-transition and high level Petri nets. Their modeling and design capabilities are illustrated by a set of representations of interest in operating and communication systems. The volume then addresses the related verification problems and proposes corresponding solutions by introducing the main notions needed to fully understand the behavior and properties behind Petri nets. Particular attention is devoted to how systems can be fully represented and analyzed in terms of their behavioral, time and stochastic aspects by using the same formal approach and semantical basis. Finally, illustrative examples are presented in the important fields of interoperability in telecommunication services, programmation languages, multimedia architectures, manufacturing systems and communication protocols.
This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in Eichsttt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been commissioned to give a well-balanced presentation of the state of the art in the area. This book will be useful as both a reference for those working in the area as well as a study book for the reader who is interested in an up-to-date overview of research and development in concurrent and distributed systems; of course, readers specifically interested in theoretical or applicational aspects of Petri nets will appreciate the book as well.
Air traffic controllers need advanced information and automated systems to provide a safe environment for everyone traveling by plane. One of the primary challenges in developing training for automated systems is to determine how much a trainee will need to know about the underlying technologies to use automation safely and efficiently. To ensure safety and success, task analysis techniques should be used as the basis of the design for training in automated systems in the aviation and aerospace industries. Automated Systems in the Aviation and Aerospace Industries is a pivotal reference source that provides vital research on the application of underlying technologies used to enforce automation safety and efficiency. While highlighting topics such as expert systems, text mining, and human-machine interface, this publication explores the concept of constructing navigation algorithms, based on the use of video information and the methods of the estimation of the availability and accuracy parameters of satellite navigation. This book is ideal for aviation professionals, researchers, and managers seeking current research on information technology used to reduce the risk involved in aviation.
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources