Limiting Future Collision Risk to Spacecraft

Limiting Future Collision Risk to Spacecraft

Author: National Research Council

Publisher: National Academies Press

Published: 2011-12-16

Total Pages: 178

ISBN-13: 0309219744

DOWNLOAD EBOOK

Derelict satellites, equipment and other debris orbiting Earth (aka space junk) have been accumulating for many decades and could damage or even possibly destroy satellites and human spacecraft if they collide. During the past 50 years, various National Aeronautics and Space Administration (NASA) communities have contributed significantly to maturing meteoroid and orbital debris (MMOD) programs to their current state. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite's structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Program examines NASA's efforts to understand the meteoroid and orbital debris environment, identifies what NASA is and is not doing to mitigate the risks posed by this threat, and makes recommendations as to how they can improve their programs. While the report identified many positive aspects of NASA's MMOD programs and efforts including responsible use of resources, it recommends that the agency develop a formal strategic plan that provides the basis for prioritizing the allocation of funds and effort over various MMOD program needs. Other necessary steps include improvements in long-term modeling, better measurements, more regular updates of the debris environmental models, and other actions to better characterize the long-term evolution of the debris environment.


Handbook of Aerospace Electromagnetic Compatibility

Handbook of Aerospace Electromagnetic Compatibility

Author: Dr. Reinaldo J. Perez

Publisher: John Wiley & Sons

Published: 2018-11-30

Total Pages: 768

ISBN-13: 1119082781

DOWNLOAD EBOOK

A comprehensive resource that explores electromagnetic compatibility (EMC) for aerospace systems Handbook of Aerospace Electromagnetic Compatibility is a groundbreaking book on EMC for aerospace systems that addresses both aircraft and space vehicles. With contributions from an international panel of aerospace EMC experts, this important text deals with the testing of spacecraft components and subsystems, analysis of crosstalk and field coupling, aircraft communication systems, and much more. The text also includes information on lightning effects and testing, as well as guidance on design principles and techniques for lightning protection. The book offers an introduction to E3 models and techniques in aerospace systems and explores EMP effects on and technology for aerospace systems. Filled with the most up-to-date information, illustrative examples, descriptive figures, and helpful scenarios, Handbook of Aerospace Electromagnetic Compatibility is designed to be a practical information source. This vital guide to electromagnetic compatibility: • Provides information on a range of topics including grounding, coupling, test procedures, standards, and requirements • Offers discussions on standards for aerospace applications • Addresses aerospace EMC through the use of testing and theoretical approaches Written for EMC engineers and practitioners, Handbook of Aerospace Electromagnetic Compatibility is a critical text for understanding EMC for aerospace systems.


Limiting Future Collision Risk to Spacecraft

Limiting Future Collision Risk to Spacecraft

Author: National Research Council

Publisher: National Academies Press

Published: 2011-11-16

Total Pages: 178

ISBN-13: 0309219779

DOWNLOAD EBOOK

Derelict satellites, equipment and other debris orbiting Earth (aka space junk) have been accumulating for many decades and could damage or even possibly destroy satellites and human spacecraft if they collide. During the past 50 years, various National Aeronautics and Space Administration (NASA) communities have contributed significantly to maturing meteoroid and orbital debris (MMOD) programs to their current state. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite's structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Program examines NASA's efforts to understand the meteoroid and orbital debris environment, identifies what NASA is and is not doing to mitigate the risks posed by this threat, and makes recommendations as to how they can improve their programs. While the report identified many positive aspects of NASA's MMOD programs and efforts including responsible use of resources, it recommends that the agency develop a formal strategic plan that provides the basis for prioritizing the allocation of funds and effort over various MMOD program needs. Other necessary steps include improvements in long-term modeling, better measurements, more regular updates of the debris environmental models, and other actions to better characterize the long-term evolution of the debris environment.


Proceedings of the Spacecraft Charging Technology Conference

Proceedings of the Spacecraft Charging Technology Conference

Author: C. P. Pike

Publisher:

Published: 1977

Total Pages: 918

ISBN-13:

DOWNLOAD EBOOK

A Spacecraft Charging Technology Conference, sponsored by the USAF and NASA, was held in October 1976. The Proceedings contain over 50 papers dealing with subjects including: (1) the geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, (5) satellite design and test. In addition, an executive summary and the transcript of a panel discussion are included. (Author).


Spacecraft Reliability and Multi-State Failures

Spacecraft Reliability and Multi-State Failures

Author: Joseph Homer Saleh

Publisher: John Wiley & Sons

Published: 2011-06-20

Total Pages: 179

ISBN-13: 111995746X

DOWNLOAD EBOOK

SPACECRAFT RELIABILITY AND MULTI-STATE FAILURES ] SPACECRAFT RELIABILITY AND MULTI-STATE FAILURES A STATISTICAL APPROACH The aerospace community has long recognized and repeatedly emphasizes the importance of reliability for space systems. Despite this, little has been published in book form on the topic. Spacecraft Reliability and Multi-State Failures addresses this gap in the literature, offering a unique focus on spacecraft reliability based on extensive statistical analysis of system and subsystem anomalies and failures. The authors provide new results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data that will be particularly useful to spacecraft manufacturers and designers, for example in guiding satellite (and subsystem) test and screening programs and providing an empirical basis for subsystem redundancy and reliability growth plans. The authors develop nonparametric results and parametric models of spacecraft and spacecraft subsystem reliability and multi-state failures, quantify the relative contribution of each subsystem to the failure of the satellites thus identifying the subsystems that drive spacecraft unreliability, and propose advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks. Spacecraft Reliability and Multi-State Failures provides new nonparametric results pertaining to spacecraft reliability based on extensive statistical analysis of on-orbit anomaly and failure data develops parametric models of spacecraft and spacecraft subsystem reliability and multi-state failures quantifies the relative contribution of each subsystem to the failure of the satellites proposes advanced stochastic modeling and analysis tools for the reliability and survivability of spacecraft and space-based networks provides a dedicated treatment of the reliability and subsystem anomalies of communication spacecraft in geostationary orbit.


Polyimide for Electronic and Electrical Engineering Applications

Polyimide for Electronic and Electrical Engineering Applications

Author: Sombel Diaham

Publisher: BoD – Books on Demand

Published: 2021-05-05

Total Pages: 336

ISBN-13: 1838800972

DOWNLOAD EBOOK

Polyimide is one of the most efficient polymers in many industries for its excellent thermal, electrical, mechanical, and chemical properties as well as its easy processability. In the electronic and electrical engineering industries, polyimide has widely been used for decades thanks to its very good dielectric and insulating properties at the high electric field and at high temperatures of around 200°C in long term-service. Moreover, polyimide appears essential for the development of new electronic devices where further considerations such as high power density, integration, higher temperature, thermal conduction management, energy storage, reliability, or flexibility are required in order to sustain the growing global electrical energy consumption. This book gathers interdisciplinary chapters on polyimide in various topics through state-of-the-art and original ongoing research.


Computational Science – ICCS 2023

Computational Science – ICCS 2023

Author: Jiří Mikyška

Publisher: Springer Nature

Published: 2023-06-28

Total Pages: 719

ISBN-13: 303135995X

DOWNLOAD EBOOK

The five-volume set LNCS 14073-14077 constitutes the proceedings of the 23rd International Conference on Computational Science, ICCS 2023, held in Prague, Czech Republic, during July 3-5, 2023. The total of 188 full papers and 94 short papers presented in this book set were carefully reviewed and selected from 530 submissions. 54 full and 37 short papers were accepted to the main track; 134 full and 57 short papers were accepted to the workshops/thematic tracks. The theme for 2023, "Computation at the Cutting Edge of Science", highlights the role of Computational Science in assisting multidisciplinary research. This conference was a unique event focusing on recent developments in scalable scientific algorithms, advanced software tools; computational grids; advanced numerical methods; and novel application areas. These innovative novel models, algorithms, and tools drive new science through efficient application in physical systems, computational and systems biology, environmental systems, finance, and others.