Understanding and Improving Designed Enzymes by Computer Simulations

Understanding and Improving Designed Enzymes by Computer Simulations

Author: Asmit Bhowmick

Publisher:

Published: 2016

Total Pages: 110

ISBN-13:

DOWNLOAD EBOOK

Abstract Understanding and Improving Designed Enzymes by Computer Simulations By Asmit Bhowmick Doctor of Philosophy in Chemical Engineering University of California, Berkeley Professor Teresa Head-Gordon, Chair The ability to control for protein structure, electrostatics and dynamical motions is a fundamental problem that limits our ability to rationally design catalysts for new chemical reactions not known to have a natural biocatalyst. Current computational approaches for de novo enzyme design seek to engineer a small catalytic construct into an accommodating protein scaffold as exemplified by the Rosetta strategy. Here we consider 3 designed enzymes for the Kemp elimination reaction (KE07, KE70 and KE15) that showed minimal catalytic activity. KE07 and KE70 were subsequently improved by 2 orders of magnitude in catalytic efficiency by directed evolution and highlighted the shortcomings of the design process. This work studies two keys issues plaguing the designs - side chain conformational variability and electrostatics. For the first part, a new Monte Carlo sampling method was developed that uses a physical forcefield and coupled with backbone variability and a backbone dependent rotamer library. Using transition state theory with energies/entropies calculated from Monte Carlo simulations, it is shown that in both KE07 and KE70, the initial design was over-optimized to stabilize the enzyme-substrate complex. Mutations introduced by directed evolutions led to destabilization of the enzyme-substrate complex and stabilization of the transition state. Furthermore, analysis of residue correlations via mutual information yielded hotspots, several of which were mutations during directed evolution. Laboratory mutations of these hotspots in the best variant of KE07 led to a drop in catalytic performance, demonstrating their importance. The metrics identified in KE07/KE70 studies were used to predict mutations to improve enzyme KE15 that had not been improved prior to this study. Several mutants, all predicted through computer simulations have now yielded better catalytic activity in the laboratory with the best one 10-fold better than the starting enzyme. In order to quantify the role of electrostatics, a new method was developed using the AMOEBA polarizable forcefield that allowed splitting the contribution of electric field at the substrate by residues and solvent. The improvement in KE07 series could be tracked directly through changes in electric field at the substrate. In comparison, KE70 did not show a significant shift in electrostatic field, suggesting other factors like substrate binding may have been the reason for enhancement of activity. However, the common theme in both enzymes was the lack of participation (and in fact detrimental role) of the scaffold in the reaction. Future design efforts would benefit from an expanded theozyme and careful selection of scaffold based on electrostatic properties. Generating efficient biocatalysts without using laboratory directed evolution would be an inflection point in the field of enzyme design. This work is a step in that direction.


Understanding Enzymes

Understanding Enzymes

Author: Allan Svendsen

Publisher: CRC Press

Published: 2016-04-27

Total Pages: 884

ISBN-13: 9814669334

DOWNLOAD EBOOK

Understanding Enzymes: Function, Design, Engineering, and Analysis focuses on the understanding of enzyme function and optimization gained in the past decade, past enzyme function analysis, enzyme engineering, and growing insights from the simulation work and nanotechnology measurement of enzymes in action in vitro or in silico. The book also prese


Computer Simulations of Enzymes

Computer Simulations of Enzymes

Author: Jianzhuang Yao

Publisher:

Published: 2014

Total Pages: 244

ISBN-13:

DOWNLOAD EBOOK

Enzymes are important catalysts in living systems, and understanding catalytic mechanisms of enzymes is an important task for modern biophysics and biochemistry. Computer simulations have emerged as very useful tools for understanding how enzymes work. In this dissertation, QM/MM MD simulations were applied to study the catalytic mechanisms of several enzymes, including sedolisin, S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases, and salicylic acid binding protein 2. For sedolisin, we focus on the acylation and deacylation reactions catalyzed by the enzymes. We proposed a general acid/base mechanism involving the Glu/Asp residues at the active site. MD and QM/MM free energy simulations on pro-kumamolisin show that the protonation of Asp164 would be able to trigger conformational changes and generate the functional active site for autocatalysis. The free energy simulations reported for SAMT, an AdoMet-dependent methyltransferase, showed that while the structure of the reactant complex containing salicylate, its natural substrate, is rather close to the corresponding TS structure, this is not the case for 4-hydroxybenzoate. The simulations demonstrated that additional energy is required to generate the TS-like structure for 4-hydroxybenzoate, consistent with the low activity of the enzyme toward this substrate. For protein lysine methyltransferase SET7/9, we showed that while the wild type SET7/9 may act like a mono-methylase, the Y245→A mutation could increase the ability of SET7/9 to add two more methyl groups on the target lysine. The substrate specificity of salicylic acid binding protein 2 (SABP2) has also been studied during my graduate study. This enzyme has promiscuous esterase activity toward a series of substrates, but shows high activity toward its natural substrate methyl salicylate (MeSA). We demonstrated that SABP2 seems to represent a case in which the enzyme itself might have not been perfectly evolved and that substrate-assisted catalysis (SAC) involving its natural substrate may be used to enhance the activity and achieve substrate discrimination. In addition to enzymes, the prediction of protein-protein interactions (PPI) is also included in my dissertation. We established a robust pipeline for PPI prediction by integrating multiple classifiers using random forests algorithm. This pipeline could be very useful for predicting PPI.


Simulating Enzyme Reactivity

Simulating Enzyme Reactivity

Author: Inaki Tunon

Publisher: Royal Society of Chemistry

Published: 2016-11-16

Total Pages: 558

ISBN-13: 1782626832

DOWNLOAD EBOOK

The simulation of enzymatic processes is a well-established field within computational chemistry, as demonstrated by the 2013 Nobel Prize in Chemistry. It has been attracting increasing attention in recent years due to the potential applications in the development of new drugs or new environmental-friendly catalysts. Featuring contributions from renowned authors, including Nobel Laureate Arieh Warshel, this book explores the theories, methodologies and applications in simulations of enzyme reactions. It is the first book offering a comprehensive perspective of the field by examining several different methodological approaches and discussing their applicability and limitations. The book provides the basic knowledge for postgraduate students and researchers in chemistry, biochemistry and biophysics, who want a deeper understanding of complex biological process at the molecular level.


Catalysis in Chemistry and Enzymology

Catalysis in Chemistry and Enzymology

Author: William P. Jencks

Publisher: Courier Corporation

Published: 1987-01-01

Total Pages: 866

ISBN-13: 9780486654607

DOWNLOAD EBOOK

Exceptionally clear coverage of mechanisms for catalysis, forces in aqueous solution, carbonyl- and acyl-group reactions, practical kinetics, more.


Computer Simulations Of Enzymes

Computer Simulations Of Enzymes

Author: Philip Hanoian

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Enzymes are proteins that perform the essential function of facilitating chemical reactions within living organisms, and the rate enhancements provided by enzymes are so significant that they remain a marvel for chemists today. The study of enzymes is thus pervaded by attempts to understand the precise mechanisms by which enzymes achieve these rate enhancements, with additional focus on the impressive level of specificity and selectivity these protein catalysts display as well. In this thesis, four studies on enzymatic systems are presented with the goal of further elucidating the mechanisms by which enzymes confer enormous rate enhancements to chemical reactions. In the first study, mixed quantum mechanical/molecular mechanical calculations are applied to study a series of phenolate inhibitors of increasing pKa bound to ketosteroid isomerase to explore the catalytically relevant hydrogen bonds in the enzyme active site. The second study uses molecular dynamics simulations to explore the use of water in the active site in lieu of the native enzymatic hydrogen bonds. The third study focuses on the positioning of the catalytic base in ketosteroid isomerase using molecular dynamics simulations, and this positioning is suggested to arise from non-local contributions involving nearby hydrophobic residues and an active site loop. In the final study, an additional enzyme, dihydrofolate reductase is examined, and empirical valence bond molecular dynamics simulations are applied to evaluate the free energy barriers of the wild-type enzyme and several evolutionarily motivated mutants. Overall, these studies help to further our understanding of enzymes and the roles of individual factors in enzyme catalysis.


Enzyme-Based Organic Synthesis

Enzyme-Based Organic Synthesis

Author: Cheanyeh Cheng

Publisher: John Wiley & Sons

Published: 2022-02-03

Total Pages: 719

ISBN-13: 1118995155

DOWNLOAD EBOOK

Enzyme-Based Organic Synthesis An insightful exploration of an increasingly popular technique in organic chemistry In Enzyme-Based Organic Synthesis, expert chemist Dr. Cheanyeh Cheng delivers a comprehensive discussion of the principles, methods, and applications of enzymatic and microbial processes for organic synthesis. The book thoroughly explores this growing area of green synthetic organic chemistry, both in the context of academic research and industrial practice. The distinguished author provides a single point of access for enzymatic methods applicable to organic synthesis and focuses on enzyme catalyzed organic synthesis with six different classes of enzyme. This book serves as a link between enzymology and biocatalysis and serves as an invaluable reference for the growing number of organic chemists using biocatalysis. Enzyme-Based Organic Synthesis provides readers with multiple examples of practical applications of the main enzyme classes relevant to the pharmaceutical, medical, food, cosmetics, fragrance, and health care industries. Readers will also find: A thorough introduction to foundational topics, including the discovery and nature of enzymes, enzyme structure, catalytic function, molecular recognition, enzyme specificity, and enzyme classes Practical discussions of organic synthesis with oxidoreductases, including oxidation reactions and reduction reactions Comprehensive explorations of organic synthesis with transferases, including transamination with aminotransferases and phosphorylation with kinases In-depth examinations of organic synthesis with hydrolases, including the hydrolysis of the ester bond Perfect for organic synthetic chemists, chemical and biochemical engineers, biotechnologists, process chemists, and enzymologists, Enzyme-Based Organic Synthesis is also an indispensable resource for practitioners in the pharmaceutical, food, cosmetics, and fragrance industries that regularly apply this type of synthesis.


Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis

Simulating Enzyme Reactivity Computational Methods in Enzyme Catalysis

Author: John Maclane

Publisher: Createspace Independent Publishing Platform

Published: 2017-06-07

Total Pages: 446

ISBN-13: 9781548041595

DOWNLOAD EBOOK

The simulation of enzymatic processes is a well-established field within computational chemistry, as demonstrated by the 2013 Nobel Prize in Chemistry. It has been attracting increasing attention in recent years due to the potential applications in the development of new drugs or new environmental-friendly catalysts. Featuring contributions from renowned authors, including Nobel Laureate Arieh Warshel, this book explores the theories, methodologies and applications in simulations of enzyme reactions. It is the first book offering a comprehensive perspective of the field by examining several different methodological approaches and discussing their applicability and limitations. The book provides the basic knowledge for postgraduate students and researchers in chemistry, biochemistry and biophysics, who want a deeper understanding of complex biological process at the molecular level.


Novel Applications and Methods for the Computer-aided Understanding and Design of Enzyme Activity

Novel Applications and Methods for the Computer-aided Understanding and Design of Enzyme Activity

Author: Brian M. Bonk

Publisher:

Published: 2018

Total Pages: 160

ISBN-13:

DOWNLOAD EBOOK

Despite great progress over the past several decades in the development and application of computer-aided tools for engineering enzymes for a vast array of industrial applications. rational enzyme design remains an ongoing challenge in biotechnology. This thesis presents a set of novel applications and methods for the computer-aided understanding and design of enzyme activity. In the first part. we apply biophysical modeling approaches in order to design non-native substrate specificity in a key enzymatic step (the thiolase-catalyzed condensation of two acyl-CoA substrates) of an industrially useful de novo metabolic pathway. We present a model-guided. rational design study of ordered substrate binding applied to two biosynthetic thiolases. with the goal of increasing the ratio of C6/C4 products formed by the 31HIA pathway, 3-hydroxyhexanoic acid and 3-hydroxybutyric acid. We identify thiolase mutants that result in nearly ten-fold increases in C6/C4 selectivity. Our findings can extend to other pathways that employ the thiolase for chain elonglation, as well as expand our knowledge of sequence-structure-function relationship for this important class of enzymes. In the second part, we apply methods from machine learning to an ensemble of reactive and non-reactive, but "almost reactive" molecular dynamics trajectories in order to elucidate catalytic drivers in another industrially important model enzyme system, ketol-acid reductoisomerase. Using a small number of molecular features, we show that we can identify conformational states that are highly predictive of reactivity at specific time points relative to the progress of the prospective catalytic event and also that provide mechanistic insight into the reaction catalyzed by this enzyme. We then present a novel theoretical framework for evaluating the contribution to the overall catalytic rate of the conformational states found in the previous part to be predictive of reactivity. Leveraging a computational enhanced sampling technique called transition interface sampling, we show that trajectories sampled in such a manner as to selectively visit the conformations predicted to be characteristic of reactivity exhibit rate constants many orders of magnitude greater than trajectories not required to visit these reactive conformations. The results of this analysis illustrate the importance of incorporating dynamical information into existing frameworks for biocatalyst design.