This book successfully illustrates the modeling of electricity prices with the help of stochastic processes. The relatively new phenomenon of negative prices is also integrated into the models. The integration of feed-in from wind power plants in energy models is also very innovative. This approach helps to simulate electricity prices in order to take into account the "merit-order effect of renewable energy". Finally, the models are used for the techno-economic evaluation of energy storages.
Energy Storage in Energy Markets reviews the modeling, design, analysis, optimization and impact of energy storage systems in energy markets in a way that is ideal for an audience of researchers and practitioners. The book provides deep insights on potential benefits and revenues, economic evaluation, investment challenges, risk analysis, technical requirements, and the impacts of energy storage integration. Heavily referenced and easily accessible to policymakers, developers, engineer, researchers and students alike, this comprehensive resource aims to fill the gap in the role of energy storage in pool/local energy/ancillary service markets and other multi-market commerce. Chapters elaborate on energy market fundamentals, operations, energy storage fundamentals, components, and the role and impact of storage systems on energy systems from different aspects, such as environmental, technical and economics, the role of storage devices in uncertainty handling in energy systems and their contributions in resiliency and reliability improvement. - Provides integrated techno-economic analysis of energy storage systems and the energy markets - Reviews impacts of electric vehicles as moving energy storage and loads on the electricity market - Analyzes the role and impact of energy storage systems in the energy, ancillary, reserve and regulatory multi-market business - Applies advanced methods to the economic integration of large-scale energy storage systems - Develops an evaluation framework for energy market storage systems
In this work a process simulation model identifies the most profitable German biogas plant types and sizes. Small manure and large-scale biowaste plants are currently the most economically attractive installations whereas the valorization of energy crops turns out to be unprofitable. Future developments are assessed with the help of a regional optimization model under constraints. Capacity expansion concerns small-scale manure and biowaste installations rather than plants based on energy crops.
In this study we develop a flexible modeling toolbox for decentralized electricity systems with an agent-based simulation approach at its core. Two RES-E generation models for wind and PV each with a high temporal and spatial resolution are presented and approaches to model specific aspects of the demand side in detail are introduced. The implementation of an AC load flow algorithm is described and the concept of a market-based congestion management mechanism is outlined.
A project planning and decision support model is developed and applied to identify and reduce risk and uncertainty in deconstruction project planning. It allows calculating building inventories based on sensor information and construction standards and it computes robust project plans for different scenarios with multiple modes, constrained renewable resources and locations. A reactive and flexible planning element is proposed in the case of schedule infeasibility during project execution.
Der Entwurf von Ansätzen zur marktbasierten Betriebsführung zukünftiger Energienetze steht vor der technischen Herausforderung, eine enorme Anzahl von Netzteilnehmern zeitlich und örtlich zu koordinieren, um Erzeugung und Verbrauch auszugleichen und einen sicheren Netzbetrieb zu ermöglichen. Um dieser Herausforderung zu begegnen entstand das Forschungsfeld der Transactive Control Ansätze. In dieser Arbeit wird ein neuer Transactive Control Ansatz für gekoppelte Strom- und Wärmenetze vorgestellt. - The design of approaches for future market-based energy network operation faces the technical challenge of needing to coordinate a vast number of network participants spatially and temporally, in order to balance energy supply and demand, while achieving secure network operation. To meet this challenge, the research field of transactive control emerged. Within this work a new transactive control approach for coupled electric power and district heating networks is presented.
Value chains of bio-based chemicals are very complex. Hence, a strategic decision support tool for bioeconomic site and logistics planning is developed. It includes an integrated model and three sub-models: optimization for the locations and capacities of pretreatment plants, technical for technical and economic evaluations, risk for the evaluation of uncertainties. As a result, the model suggests a nearly optimal location and the associated logistic network for the production of biochemicals.
Finite fossil resources require the exploitation of alternative energy sources like photovoltaics. A methodology for the economic potential assessment of photovoltaic installations on buildings including building facades has been developed. It is based on detailed irradiation simulations and a combination of geographically referenced and statistical data and has been applied to the German building stock for 2015. A prognosis for the potential development until 2050 is given.