This volume presents a complete and thorough examination of advances in the instrumentation, evaluation, and implementation of UV technology for reliable and efficient data acquisition and analysis. It provides real-world applications in expanding fields such as chemical physics, plasma science, photolithography, laser spectroscopy, astronomy and atmospheric science.
This volume presents a complete and thorough examination of advances in the instrumentation, evaluation, and implementation of UV technology for reliable and efficient data acquisition and analysis. It provides real-world applications in expanding fields such as chemical physics, plasma science, photolithography, laser spectroscopy, astronomy and a
Ultraviolet Laser Technology and Applications is a hands-on reference text that identifies the main areas of UV laser technology; describes how each is applied; offers clearly illustrated examples of UV opticalsystems applications; and includes technical data on optics, lasers, materials, and systems. This book is unique for its comprehensive, in-depth coverage. Each chapter deals with a different aspect of the subject, beginning with UV light itself; moving through the optics, sources, and systems; and concluding with detailed descriptions of applications in various fields. The text enables practicing engineers and researchers to utilize concepts and innovations to solve actual problems encountered in UV optical technology applications. It also offers a wealth of information for equipment designers and manufacturers. Those in laser fields (including medical, electronics, and semiconductors), students, engineers, technicians, as well as newcomers to the subject who require a basic introduction to the topic, will all find Ultraviolet Laser Technology and Applications to be an essential resource. Serves as a valuable, practical reference to UV laser technology Presents detailed technical data and techniques Offers highly illustrated optics designs and beam delivery systems Includes an extensive bibliography, references, and glossary Covers all major UV laser markets and technology systems
This volume presents a complete and thorough examination of advances in the instrumentation, evaluation, and implementation of UV technology for reliable and efficient data acquisition and analysis. It provides real-world applications in expanding fields such as chemical physics, plasma science, photolithography, laser spectroscopy, astronomy and atmospheric science.
The Instrument and Automation Engineers’ Handbook (IAEH) is the #1 process automation handbook in the world. Volume two of the Fifth Edition, Analysis and Analyzers, describes the measurement of such analytical properties as composition. Analysis and Analyzers is an invaluable resource that describes the availability, features, capabilities, and selection of analyzers used for determining the quality and compositions of liquid, gas, and solid products in many processing industries. It is the first time that a separate volume is devoted to analyzers in the IAEH. This is because, by converting the handbook into an international one, the coverage of analyzers has almost doubled since the last edition. Analysis and Analyzers: Discusses the advantages and disadvantages of various process analyzer designs Offers application- and method-specific guidance for choosing the best analyzer Provides tables of analyzer capabilities and other practical information at a glance Contains detailed descriptions of domestic and overseas products, their features, capabilities, and suppliers, including suppliers’ web addresses Complete with 82 alphabetized chapters and a thorough index for quick access to specific information, Analysis and Analyzers is a must-have reference for instrument and automation engineers working in the chemical, oil/gas, pharmaceutical, pollution, energy, plastics, paper, wastewater, food, etc. industries. About the eBook The most important new feature of the IAEH, Fifth Edition is its availability as an eBook. The eBook provides the same content as the print edition, with the addition of thousands of web addresses so that readers can reach suppliers or reference books and articles on the hundreds of topics covered in the handbook. This feature includes a complete bidders' list that allows readers to issue their specifications for competitive bids from any or all potential product suppliers.
Developments in lasers continue to enable progress in many areas such as eye surgery, the recording industry and dozens of others. This book presents citations from the book literature for the last 25 years and groups them for ease of access which is also provided by subject, author and titles indexes.
Unlock the Power of Spectroscopy for Analysis Spectroscopy provides critical insights into chemical structures and properties. This book offers an in-depth guide to Four essential spectroscopy techniques for every chemist's toolkit: UV-Vis, IR, Mass, and NMR. Learn the theoretical foundations that make spectroscopy possible. Master the instrumentation involved in modern spectroscopic analysis. Discover practical applications from molecular identification to structural elucidation. Whether you are new to spectroscopy or looking to deepen your expertise, this book has you covered. Key Features: · Comprehensive overview of UV-Vis, IR, Mass, and NMR spectroscopic techniques · Plain explanations of fundamental principles behind spectroscopy · Detailed guidance on instrumentation, equipment, and procedures · Practical examples demonstrating spectroscopic analysis in chemical research. · Extensive illustrations and spectra to enhance understanding. · Chapter summaries and practice questions for testing knowledge Written by leading experts in analytical chemistry, this book combines deep scientific rigor with accessibility and relevance. It empowers chemistry students and working professionals to advance their skills and careers through a fuller command of essential spectroscopy techniques.
This book covers the physics, technology and applications of short pulse laser sources that generate pulses with durations of only a few optical cycles. The basic design considerations for the different systems such as lasers, parametric amplifiers and external compression techniques which have emerged over the last decade are discussed to give researchers and graduate students a thorough introduction to this field. The existence of these sources has opened many new fields of research that were not possible before. These are UV and EUV generation from table-top systems using high-harmonic generation, frequency metrology enabling optical frequency counting, high-resolution optical coherence tomography, strong-field ultrafast solid-state processes and ultrafast spectroscopy, to mention only a few. Many new applications will follow. The book attempts to give a comprehensive, while not excessive, introduction to this exciting new field that serves both experienced researchers and graduate students entering the field. The first half of the book covers the current physical principles, processes and design guidelines to generate pulses in the optical range comprising only a few cycles of light. Such as the generation of relatively low energy pulses at high repetition rates directly from the laser, parametric generation of medium energy pulses and high-energy pulses at low repetition rates using external compression in hollow fibers. The applications cover the revolution in frequency metrology and high-resolution laser spectroscopy to electric field synthesis in the optical range as well as the emerging field of high-harmonic generation and attosecond science, high-resolution optical imaging and novel ultrafast dynamics in semiconductors. These fields benefit from the strong electric fields accompanying these pulses in solids and gases during events comprising only a few cycles of light.
An up-to-date overview of reflectometers used for optical spectroscopy of various kinds of liquids, ranging from well-known transparent liquids to "pathological" industrial liquids. The book reviews and explains basic materials for anyone wanting to get to know the theory, spectral analysis and modern devices needed for the measurement of refractive index and absorption of liquids. Moreover, the book gives an introduction to reflectivity from optically nonlinear liquids such as liquids containing nanoparticles.