This book showcases how new and emerging technologies like Unmanned Aerial Vehicles (UAVs) are trying to provide solutions to unresolved socio-economic and environmental problems. Unmanned vehicles can be classified into five different types according to their operation. These five types are unmanned ground vehicles, unmanned aerial vehicles, unmanned surface vehicles (operating on the surface of the water), unmanned underwater vehicles, and unmanned spacecraft. Unmanned vehicles can be guided remotely or function as autonomous vehicles. The technology has a wide range of uses including agriculture, industry, transport, communication, surveillance and environment applications. UAVs are widely used in precision agriculture; from monitoring the crops to crop damage assessment. This book explains the different methods in which they are used, providing step-by-step image processing and sample data. It also discusses how smart UAVs will provide unique opportunities for manufacturers to utilise new technological trends to overcome the current challenges of UAV applications. The book will be of great interest to researchers engaged in forest carbon measurement, road patrolling, plantation monitoring, crop yield estimation, crop damage assessment, terrain modelling, fertilizer control, and pest control.
The Handbook of Unmanned Aerial Vehicles is a reference text for the academic and research communities, industry, manufacturers, users, practitioners, Federal Government, Federal and State Agencies, the private sector, as well as all organizations that are and will be using unmanned aircraft in a wide spectrum of applications. The Handbook covers all aspects of UAVs, from design to logistics and ethical issues. It is also targeting the young investigator, the future inventor and entrepreneur by providing an overview and detailed information of the state-of-the-art as well as useful new concepts that may lead to innovative research. The contents of the Handbook include material that addresses the needs and ‘know how’ of all of the above sectors targeting a very diverse audience. The Handbook offers a unique and comprehensive treatise of everything one needs to know about unmanned aircrafts, from conception to operation, from technologies to business activities, users, OEMs, reference sources, conferences, publications, professional societies, etc. It should serve as a Thesaurus, an indispensable part of the library for everyone involved in this area. For the first time, contributions by the world’s top experts from academia, industry, government and the private sector, are brought together to provide unique perspectives on the current state-of-the-art in UAV, as well as future directions. The Handbook is intended for the expert/practitioner who seeks specific technical/business information, for the technically-oriented scientists and engineers, but also for the novice who wants to learn more about the status of UAV and UAV-related technologies. The Handbook is arranged in a user-friendly format, divided into main parts referring to: UAV Design Principles; UAV Fundamentals; UAV Sensors and Sensing Strategies; UAV Propulsion; UAV Control; UAV Communication Issues; UAV Architectures; UAV Health Management Issues; UAV Modeling, Simulation, Estimation and Identification; MAVs and Bio-Inspired UAVs; UAV Mission and Path Planning; UAV Autonomy; UAV Sense, Detect and Avoid Systems; Networked UAVs and UAV Swarms; UAV Integration into the National Airspace; UAV-Human Interfaces and Decision Support Systems; Human Factors and Training; UAV Logistics Support; UAV Applications; Social and Ethical Implications; The Future of UAVs. Each part is written by internationally renowned authors who are authorities in their respective fields. The contents of the Handbook supports its unique character as a thorough and comprehensive reference book directed to a diverse audience of technologists, businesses, users and potential users, managers and decision makers, novices and experts, who seek a holistic volume of information that is not only a technical treatise but also a source for answers to several questions on UAV manufacturers, users, major players in UAV research, costs, training required and logistics issues.
The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The authors explore the essential underlying physics and sensors of UAV problems, including low-level autopilot for stability and higher-level autopilot functions of path planning. The textbook leads the student from rigid-body dynamics through aerodynamics, stability augmentation, and state estimation using onboard sensors, to maneuvering through obstacles. To facilitate understanding, the authors have replaced traditional homework assignments with a simulation project using the MATLAB/Simulink environment. Students begin by modeling rigid-body dynamics, then add aerodynamics and sensor models. They develop low-level autopilot code, extended Kalman filters for state estimation, path-following routines, and high-level path-planning algorithms. The final chapter of the book focuses on UAV guidance using machine vision. Designed for advanced undergraduate or graduate students in engineering or the sciences, this book offers a bridge to the aerodynamics and control of UAV flight.
First used in military applications, unmanned aerial vehicles are becoming an integral aspect of modern society and are expanding into the commercial, scientific, recreational, agricultural, and surveillance sectors. With the increasing use of these drones by government officials, business professionals, and civilians, more research is needed to understand their complexity both in design and function. Unmanned Aerial Vehicles: Breakthroughs in Research and Practice is a critical source of academic knowledge on the design, construction, and maintenance of drones, as well as their applications across all aspects of society. Highlighting a range of pertinent topics such as intelligent systems, artificial intelligence, and situation awareness, this publication is an ideal reference source for military consultants, military personnel, business professionals, operation managers, surveillance companies, agriculturalists, policymakers, government officials, law enforcement, IT professionals, academicians, researchers, and graduate-level students.
UNMANNED AERIAL VEHICLES FOR INTERNET OF THINGS This comprehensive book deeply discusses the theoretical and technical issues of unmanned aerial vehicles for deployment by industries and civil authorities in Internet of Things (IoT) systems. Unmanned aerial vehicles (UAVs) has become one of the rapidly growing areas of technology, with widespread applications covering various domains. UAVs play a very important role in delivering Internet of Things (IoT) services in small and low-power devices such as sensors, cameras, GPS receivers, etc. These devices are energy-constrained and are unable to communicate over long distances. The UAVs work dynamically for IoT applications in which they collect data and transmit it to other devices that are out of communication range. Furthermore, the benefits of the UAV include deployment at remote locations, the ability to carry flexible payloads, reprogrammability during tasks, and the ability to sense for anything from anywhere. Using IoT technologies, a UAV may be observed as a terminal device connected with the ubiquitous network, where many other UAVs are communicating, navigating, controlling, and surveilling in real time and beyond line-of-sight. The aim of the 15 chapters in this book help to realize the full potential of UAVs for the IoT by addressing its numerous concepts, issues and challenges, and develops conceptual and technological solutions for handling them. Applications include such fields as disaster management, structural inspection, goods delivery, transportation, localization, mapping, pollution and radiation monitoring, search and rescue, farming, etc. In addition, the book covers: Efficient energy management systems in UAV-based IoT networks IoE enabled UAVs Mind-controlled UAV using Brain-Computer Interface (BCI) The importance of AI in realizing autonomous and intelligent flying IoT Blockchain-based solutions for various security issues in UAV-enabled IoT The challenges and threats of UAVs such as hijacking, privacy, cyber-security, and physical safety. Audience: Researchers in computer science, Internet of Things (IoT), electronics engineering, as well as industries that use and deploy drones and other unmanned aerial vehicles.
Many industries have begun to recognize the potential support that unmanned aerial vehicles (UAVs) offer, and this is no less true for the commercial sector. Current research on this field is narrowly focused on technological development to improve the functionality of delivery and endurance of the drone delivery in logistics, as well as on regulatory challenges posed by such operations. There is a need for further attention to be applied to operational and integration challenges associated with UAVs. Unmanned Aerial Vehicles in Civilian Logistics and Supply Chain Management is a collection of innovative research that investigates the opportunities and challenges for the use of UAVs in logistics and supply chain management with a specific aim to focus on the multifaceted impact of drone delivery. While highlighting topics including non-military operations, public management, and safety culture, this book is ideally designed for government administrators, managers, industry professionals, researchers, and students.
This comprehensive resource explains the development of UAVs, drone threats, counter-UAV systems, and strategies to handle UAVs, focusing on the practical aspects of counter-unmanned aerial vehicle (UAV) systems and technologies.Theory, technical and operational practice with insights from industry and policing are covered, and the full rogue drone threat landscape and counter-drone technologies and systems is explored. The book provides insight into counter-drone strategy, developing effective counter-drone strategies and measures, as well as counter-drone programs and the regulatory frameworks governing the use of drones. It includes analysis of future drone and counter-drone challenges and highlights ongoing research and innovation activities and an examination of future drone technologies. Written by authors who have extensive academic, research, innovation, technical, industry and police operational investigative expertise at international level, this book is useful for the aviation sector, law enforcement and academia.
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.