This volume covers the latest scientific developments in the real world applications of pollution modeling. Topics covered include: the role of atmospheric models in air pollution policy and abatement strategies; integrated regional modelling; global and long-range transport; aerosols as atmospheric contaminants; model assessment and verification; and application of new concepts in different regions of the world.
In recent years, Air Quality Management has become of major importance, especially in megacities, i.e. those with more than 10 million inhabitants. The present publication provides scientists and engineers working in this area with the most recent results touching all major aspects of this highly important field.
This textbook treats Hydro- and Fluid Dynamics, the engineering science dealing with forces and energies generated by fluids in motion, playing a vital role in everyday life. Practical examples include the flow motion in the kitchen sink, the exhaust fan above the stove, and the air conditioning system in our home. When driving a car, the air flow around the vehicle body induces some drag which increases with the square of the car speed and contributes to excess fuel consumption. Engineering applications encompass fluid transport in pipes and canals, energy generation, environmental processes and transportation (cars, ships, aircrafts). This book deals with the topic of applied hydrodynamics. The lecture material is grouped into two complementary sections: ideal fluid flow and real fluid flow. The former deals with two- and possibly three-dimensional fluid motions that are not subject to boundary friction effects, while the latter considers the flow regions affected by boundary friction and turbulent shear. The lecture material is designed as an intermediate course in fluid dynamics for senior undergraduate and postgraduate students in Civil, Environmental, Hydraulic and Mechanical Engineering. It is supported by notes, applications, remarks and discussions in each chapter. Moreover a series of appendices is added, while some major homework assignments are developed at the end of the book, before the bibliographic references.
This book introduces the principles of gravitational, magnetic, electrostatic, direct current electrical and electromagnetic fields, with detailed solutions of Laplace and electromagnetic wave equations by the method of separation of variables. Discussion includes behaviours of the scalar and vector potential and the nature of the solutions of these boundary value problems, along with the use of complex variables and conformal transformation, Green's theorem, Green's formula and Green's functions.
This first volume discusses fluid mechanical concepts and their applications to ideal and viscous processes. It describes the fundamental hydrostatics and hydrodynamics, and includes an almanac of flow problems for ideal fluids. The book presents numerous exact solutions of flows in simple configurations, each of which is constructed and graphically supported. It addresses ideal, potential, Newtonian and non-Newtonian fluids. Simple, yet precise solutions to special flows are also constructed, namely Blasius boundary layer flows, matched asymptotics of the Navier-Stokes equations, global laws of steady and unsteady boundary layer flows and laminar and turbulent pipe flows. Moreover, the well-established logarithmic velocity profile is criticised.
The groundwater science and engineering has been closely connected with various fields (1) Groundwater Hydrology, (2) Groundwater Hydraulics or Geohydraulics, (3) Fluid Dynamics in Porous Media, (4) Groundwater Quality Engineering, (5) Soil Physics, and (6) Hydrogeology or Geohydrology. The purpose of the book is to present an update textbook of groundwater hydraulics, which includes all of basic items in above-mentioned fields, to students (of graduate school), researchers and practitioners. The students and beginners who intend to specialize in groundwater hydraulics through one semester will master contents of the book.