Ordered and Turbulent Patterns in Taylor-Couette Flow

Ordered and Turbulent Patterns in Taylor-Couette Flow

Author: C. David Andereck

Publisher: Springer

Published: 2013-11-10

Total Pages: 357

ISBN-13: 9781461365211

DOWNLOAD EBOOK

Seldom does a physical system, particularly one as apparently simple as the flow of a Newtonian fluid between concentric rotating cylinders, retain the interest of scientists, applied mathematicians and engineers for very long. Yet, as this volume goes to press it has been nearly 70 years since G. I. Taylor's outstanding experimental and theoretical study of the linear stability of this flow was published, and a century since the first experiments were performed on rotating cylinder viscometers. Since then, the study of this system has progressed enormously, but new features of the flow patterns are still being uncovered. Interesting variations on the basic system abound. Connections with open flows are being made. More complex fluids are used in some experiments. The vigor of the research going on in this particular example of nonequilibrium systems was very apparent at the NATO Advanced Research Workshop on "Ordered and Turbulent Patterns in Taylor Couette Flow," held in Columbus, Ohio, USA May 22-24, 1991. A primary goal of this ARW was to bring together those interested in pattern formation in the classic Taylor Couette problem with those looking at variations on the basic system and with those interested in related systems, in order to better define the interesting areas for the future, the open questions, and the features common (and not common) to closed and open systems. This volume contains many of the contributions presented during the workshop.


An Experimental Study of Heat Transfer at High Temperature Differences in Turbulent Air Flow Between a Rotating Cylinder and a Stationary Concentric Outer Cylinder

An Experimental Study of Heat Transfer at High Temperature Differences in Turbulent Air Flow Between a Rotating Cylinder and a Stationary Concentric Outer Cylinder

Author: G. S. Longobardo

Publisher:

Published: 1962

Total Pages: 356

ISBN-13:

DOWNLOAD EBOOK

Velocity and temperature data were obtained for the annulus between a rotating inner cylinder and a stationary outer cylinder. The data were obtained for air under circumstances such that appreciable variation of the transport properties and density would occur in a turbulent flow. These data make possible a test of current theories for the behavior of turbulent, variable-property flow. (Author).


Rotating Flow

Rotating Flow

Author: Peter Childs

Publisher: Elsevier

Published: 2010-10-29

Total Pages: 415

ISBN-13: 0123820995

DOWNLOAD EBOOK

Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources