Tensor Categories

Tensor Categories

Author: Pavel Etingof

Publisher: American Mathematical Soc.

Published: 2016-08-05

Total Pages: 362

ISBN-13: 1470434415

DOWNLOAD EBOOK

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.


Indecomposable Representations of Graphs and Algebras

Indecomposable Representations of Graphs and Algebras

Author: Vlastimil Dlab

Publisher: American Mathematical Soc.

Published: 1976

Total Pages: 66

ISBN-13: 0821818732

DOWNLOAD EBOOK

I.N. Bernstein, I.M. Gelfand and V.A. Ponomarev have recently shown that the bijection, first observed by P. Gabriel, between the indecomposable representations of graphs ("quivers") with a positive definite quadratic form and the positive roots of this form can be proved directly. Appropriate functors produce all indecomposable representations from the simple ones in the same way as the canonical generators of the Weyl group produce all positive roots from the simple ones. This method is extended in two directions. In order to deal with all Dynkin diagrams rather than with those having single edges only, we consider valued graphs ("species"). In addition, we consider valued graphs with positive semi-definite quadratic form, i.e. extended Dynkin diagrams. The main result of the paper describes all indecomposable representations up to the homogeneous ones, of a valued graph with positive semi-definite quadratic form. These indecomposable representations are of two types: those of discrete dimension type, and those of continuous dimension type.