Presentation Zen

Presentation Zen

Author: Garr Reynolds

Publisher: Pearson Education

Published: 2009-04-15

Total Pages: 316

ISBN-13: 0321601890

DOWNLOAD EBOOK

FOREWORD BY GUY KAWASAKI Presentation designer and internationally acclaimed communications expert Garr Reynolds, creator of the most popular Web site on presentation design and delivery on the Net — presentationzen.com — shares his experience in a provocative mix of illumination, inspiration, education, and guidance that will change the way you think about making presentations with PowerPoint or Keynote. Presentation Zen challenges the conventional wisdom of making "slide presentations" in today’s world and encourages you to think differently and more creatively about the preparation, design, and delivery of your presentations. Garr shares lessons and perspectives that draw upon practical advice from the fields of communication and business. Combining solid principles of design with the tenets of Zen simplicity, this book will help you along the path to simpler, more effective presentations.


Modern Graph Theory

Modern Graph Theory

Author: Bela Bollobas

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 408

ISBN-13: 1461206197

DOWNLOAD EBOOK

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.


Combinatorial Group Theory

Combinatorial Group Theory

Author: Roger C. Lyndon

Publisher: Springer

Published: 2015-03-12

Total Pages: 354

ISBN-13: 3642618960

DOWNLOAD EBOOK

From the reviews: "This book [...] defines the boundaries of the subject now called combinatorial group theory. [...] it is a considerable achievement to have concentrated a survey of the subject into 339 pages. [...] a valuable and welcome addition to the literature, containing many results not previously available in a book. It will undoubtedly become a standard reference." Mathematical Reviews


Groups Acting on Graphs

Groups Acting on Graphs

Author: Warren Dicks

Publisher: Cambridge University Press

Published: 1989-03-09

Total Pages: 304

ISBN-13: 9780521230339

DOWNLOAD EBOOK

Originally published in 1989, this is an advanced text and research monograph on groups acting on low-dimensional topological spaces, and for the most part the viewpoint is algebraic. Much of the book occurs at the one-dimensional level, where the topology becomes graph theory. Two-dimensional topics include the characterization of Poincare duality groups and accessibility of almost finitely presented groups. The main three-dimensional topics are the equivariant loop and sphere theorems. The prerequisites grow as the book progresses up the dimensions. A familiarity with group theory is sufficient background for at least the first third of the book, while the later chapters occasionally state without proof and then apply various facts which require knowledge of homological algebra and algebraic topology. This book is essential reading for anyone contemplating working in the subject.


Aspects of Combinatorics

Aspects of Combinatorics

Author: Victor Bryant

Publisher: Cambridge University Press

Published: 1993-01-14

Total Pages: 280

ISBN-13: 9780521429979

DOWNLOAD EBOOK

Combinatorics is a broad and important area of mathematics, and this textbook provides the beginner with the ideal introduction to many of the different aspects of the subject.


Cohomology of Groups

Cohomology of Groups

Author: Kenneth S. Brown

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 318

ISBN-13: 1468493272

DOWNLOAD EBOOK

Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.


Discrete Mathematics with Proof

Discrete Mathematics with Proof

Author: Eric Gossett

Publisher: John Wiley & Sons

Published: 2009-06-22

Total Pages: 932

ISBN-13: 0470457937

DOWNLOAD EBOOK

A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.


Art Gallery Theorems and Algorithms

Art Gallery Theorems and Algorithms

Author: Joseph O'Rourke

Publisher: Oxford University Press, USA

Published: 1987

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

Art gallery theorems and algorithms are so called because they relate to problems involving the visibility of geometrical shapes and their internal surfaces. This book explores generalizations and specializations in these areas. Among the presentations are recently discovered theorems on orthogonal polygons, polygons with holes, exterior visibility, visibility graphs, and visibility in three dimensions. The author formulates many open problems and offers several conjectures, providing arguments which may be followed by anyone familiar with basic graph theory and algorithms. This work may be applied to robotics and artificial intelligence as well as other fields, and will be especially useful to computer scientists working with computational and combinatorial geometry.


Mathematical Methods in Linguistics

Mathematical Methods in Linguistics

Author: Barbara B.H. Partee

Publisher: Springer Science & Business Media

Published: 1990-04-30

Total Pages: 692

ISBN-13: 9789027722454

DOWNLOAD EBOOK

Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.


Szegő's Theorem and Its Descendants

Szegő's Theorem and Its Descendants

Author: Barry Simon

Publisher: Princeton University Press

Published: 2010-11-08

Total Pages: 663

ISBN-13: 1400837057

DOWNLOAD EBOOK

This book presents a comprehensive overview of the sum rule approach to spectral analysis of orthogonal polynomials, which derives from Gábor Szego's classic 1915 theorem and its 1920 extension. Barry Simon emphasizes necessary and sufficient conditions, and provides mathematical background that until now has been available only in journals. Topics include background from the theory of meromorphic functions on hyperelliptic surfaces and the study of covering maps of the Riemann sphere with a finite number of slits removed. This allows for the first book-length treatment of orthogonal polynomials for measures supported on a finite number of intervals on the real line. In addition to the Szego and Killip-Simon theorems for orthogonal polynomials on the unit circle (OPUC) and orthogonal polynomials on the real line (OPRL), Simon covers Toda lattices, the moment problem, and Jacobi operators on the Bethe lattice. Recent work on applications of universality of the CD kernel to obtain detailed asymptotics on the fine structure of the zeros is also included. The book places special emphasis on OPRL, which makes it the essential companion volume to the author's earlier books on OPUC.