Computation of Transonic Viscous-Inviscid Interacting Flow

Computation of Transonic Viscous-Inviscid Interacting Flow

Author: D. L. Whitfield

Publisher:

Published: 1983

Total Pages: 6

ISBN-13:

DOWNLOAD EBOOK

Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. (Author).


Viscous-inviscid Interaction in Transonic Flow

Viscous-inviscid Interaction in Transonic Flow

Author: Laurence Byron Wigton

Publisher:

Published: 1981

Total Pages: 244

ISBN-13:

DOWNLOAD EBOOK

The aim of this thesis is to couple an inviscid two dimensional steady transonic flow calculation with a boundary layer calculation. This interaction is especially important in transonic problems since the boundary layer has a significant effect on the inviscid portion of the flow. Here, the inviscid solution is obtained by an algorithm developed for the full potential equation by Holst and Ballhaus while the attached and separated turbulent boundary layer calculations are performed by Green's lag entrainment method. Guided by a model problem suggested by Le Balleur, a viscous-inviscid coupling algorithm is developed. Theoretical analysis indicates that it coverages rapidly for attached flows ad also performs well for separated flows. These conclusions are confirmed through a series of challenging transonic calculations involving both attached and separated flows. The coupling algorithm is remarkably stable and allows computation of coupled viscous-inviscid flows within times required to perform the inviscid calculations by themselves. (Author).


Investigation of Viscous/Inviscid Interaction in Transonic Flow Over Airfoils with Suction

Investigation of Viscous/Inviscid Interaction in Transonic Flow Over Airfoils with Suction

Author: National Aeronautics and Space Administration (NASA)

Publisher: Createspace Independent Publishing Platform

Published: 2018-07-18

Total Pages: 128

ISBN-13: 9781723187162

DOWNLOAD EBOOK

The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods. Vemuru, C. S. and Tiwari, S. N. Unspecified Center AIRFOILS; BOUNDARY VALUE PROBLEMS; FINITE VOLUME METHOD; SUCTION; TRANSONIC FLOW; BOUNDARY CONDITIONS; FLOW DISTRIBUTION; FLOW VELOCITY; INVISCID FLOW; LAMINAR BOUNDARY LAYER; TURBULENT BOUNDARY LAYER; VISCOUS FLOW...