Translation Surfaces

Translation Surfaces

Author: Jayadev S. Athreya

Publisher: American Mathematical Society

Published: 2024-04-17

Total Pages: 195

ISBN-13: 147047655X

DOWNLOAD EBOOK

This textbook offers an accessible introduction to translation surfaces. Building on modest prerequisites, the authors focus on the fundamentals behind big ideas in the field: ergodic properties of translation flows, counting problems for saddle connections, and associated renormalization techniques. Proofs that go beyond the introductory nature of the book are deftly omitted, allowing readers to develop essential tools and motivation before delving into the literature. Beginning with the fundamental example of the flat torus, the book goes on to establish the three equivalent definitions of translation surface. An introduction to the moduli space of translation surfaces follows, leading into a study of the dynamics and ergodic theory associated to a translation surface. Counting problems and group actions come to the fore in the latter chapters, giving a broad overview of progress in the 40 years since the ergodicity of the Teichmüller geodesic flow was proven. Exercises are included throughout, inviting readers to actively explore and extend the theory along the way. Translation Surfaces invites readers into this exciting area, providing an accessible entry point from the perspectives of dynamics, ergodicity, and measure theory. Suitable for a one- or two-semester graduate course, it assumes a background in complex analysis, measure theory, and manifolds, while some familiarity with Riemann surfaces and ergodic theory would be beneficial.


Geometry and topology of wild translation surfaces

Geometry and topology of wild translation surfaces

Author: Randecker, Anja

Publisher: KIT Scientific Publishing

Published: 2016-04-28

Total Pages: 162

ISBN-13: 3731504561

DOWNLOAD EBOOK

A translation surface is a two-dimensional manifold, equipped with a translation structure. It can be obtained by considering Euclidean polygons and identifying their edges via translations. The vertices of the polygons form singularities if the translation structure can not be extended to them. We study translation surfaces with wild singularities, regarding the topology (genus and space of ends), the geometry (behavior of the singularities), and how the topology and the geometry are related.


Mostly Surfaces

Mostly Surfaces

Author: Richard Evan Schwartz

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 330

ISBN-13: 0821853686

DOWNLOAD EBOOK

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.


Non-integrable Dynamics: Time-quantitative Results

Non-integrable Dynamics: Time-quantitative Results

Author: Jozsef Beck

Publisher: World Scientific

Published: 2023-08-24

Total Pages: 401

ISBN-13: 9811273871

DOWNLOAD EBOOK

The subject of this monograph is to describe orbits of slowly chaotic motion. The study of geodesic flow on the unit torus is motivated by the irrational rotation sequence, where the most outstanding result is the Kronecker-Weyl equidistribution theorem and its time-quantitative enhancements, including superuniformity. Another important result is the Khinchin density theorem on superdensity, a best possible form of time-quantitative density. The purpose of this monograph is to extend these classical time-quantitative results to some non-integrable flat dynamical systems.The theory of dynamical systems is on the most part about the qualitative behavior of typical orbits and not about individual orbits. Thus, our study deviates from, and indeed is in complete contrast to, what is considered the mainstream research in dynamical systems. We establish non-trivial results concerning explicit individual orbits and describe their long-term behavior in a precise time-quantitative way. Our non-ergodic approach gives rise to a few new methods. These are based on a combination of ideas in combinatorics, number theory, geometry and linear algebra.Approximately half of this monograph is devoted to a time-quantitative study of two concrete simple non-integrable flat dynamical systems. The first concerns billiard in the L-shape region which is equivalent to geodesic flow on the L-surface. The second concerns geodesic flow on the surface of the unit cube. In each, we give a complete description of time-quantitative equidistribution for every geodesic with a quadratic irrational slope.


Geometrical Themes Inspired by the N-body Problem

Geometrical Themes Inspired by the N-body Problem

Author: Luis Hernández-Lamoneda

Publisher: Springer

Published: 2018-02-26

Total Pages: 133

ISBN-13: 3319714287

DOWNLOAD EBOOK

Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order to motivate the McGehee transformation. A. Pedroza’s notes provide a brief introduction to Lagrangian Floer homology and its relation to the solution of the Arnol’d conjecture on the minimal number of non-degenerate fixed points of a Hamiltonian diffeomorphism.


Dynamical Aspects of Teichmüller Theory

Dynamical Aspects of Teichmüller Theory

Author: Carlos Matheus Silva Santos

Publisher: Springer

Published: 2018-07-09

Total Pages: 132

ISBN-13: 3319921592

DOWNLOAD EBOOK

This book is a remarkable contribution to the literature on dynamical systems and geometry. It consists of a selection of work in current research on Teichmüller dynamics, a field that has continued to develop rapidly in the past decades. After a comprehensive introduction, the author investigates the dynamics of the Teichmüller flow, presenting several self-contained chapters, each addressing a different aspect on the subject. The author includes innovative expositions, all the while solving open problems, constructing examples, and supplementing with illustrations. This book is a rare find in the field with its guidance and support for readers through the complex content of moduli spaces and Teichmüller Theory. The author is an internationally recognized expert in dynamical systems with a talent to explain topics that is rarely found in the field. He has created a text that would benefit specialists in, not only dynamical systems and geometry, but also Lie theory and number theory.


Mathematical Methods for Curves and Surfaces

Mathematical Methods for Curves and Surfaces

Author: Michael Floater

Publisher: Springer

Published: 2017-10-17

Total Pages: 333

ISBN-13: 331967885X

DOWNLOAD EBOOK

This volume constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Mathematical Methods for Curves and Surfaces, MMCS 2016, held in Tønsberg, Norway, in June 2016. The 17 revised full papers presented were carefully reviewed and selected from 115 submissions. The topics range from mathematical theory to industrial applications.


Ergodic Theory

Ergodic Theory

Author: Cesar E. Silva

Publisher: Springer Nature

Published: 2023-07-31

Total Pages: 707

ISBN-13: 1071623885

DOWNLOAD EBOOK

This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras


Algebraic and Topological Dynamics

Algebraic and Topological Dynamics

Author: S. F. Koli︠a︡da

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 378

ISBN-13: 0821837516

DOWNLOAD EBOOK

This volume contains a collection of articles from the special program on algebraic and topological dynamics and a workshop on dynamical systems held at the Max-Planck Institute (Bonn, Germany). It reflects the extraordinary vitality of dynamical systems in its interaction with a broad range of mathematical subjects. Topics covered in the book include asymptotic geometric analysis, transformation groups, arithmetic dynamics, complex dynamics, symbolic dynamics, statisticalproperties of dynamical systems, and the theory of entropy and chaos. The book is suitable for graduate students and researchers interested in dynamical systems.


Transactions of the American Mathematical Society

Transactions of the American Mathematical Society

Author: American Mathematical Society

Publisher:

Published: 1911

Total Pages: 538

ISBN-13:

DOWNLOAD EBOOK

Monthly journal devoted entirely to research in pure and applied mathematics, and, in general, includes longer papers than those in the Proceedings of the American Mathematical Society.