Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices

Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices

Author: Dan M. Fleetwood

Publisher: World Scientific

Published: 2004

Total Pages: 354

ISBN-13: 9789812794703

DOWNLOAD EBOOK

This book provides a detailed treatment of radiation effects in electronic devices, including effects at the material, device, and circuit levels. The emphasis is on transient effects caused by single ionizing particles (single-event effects and soft errors) and effects produced by the cumulative energy deposited by the radiation (total ionizing dose effects). Bipolar (Si and SiGe), metalOCooxideOCosemiconductor (MOS), and compound semiconductor technologies are discussed. In addition to considering the specific issues associated with high-performance devices and technologies, the book includes the background material necessary for understanding radiation effects at a more general level. Contents: Single Event Effects in Avionics and on the Ground (E Normand); Soft Errors in Commercial Integrated Circuits (R C Baumann); System Level Single Event Upset Mitigation Strategies (W F Heidergott); Space Radiation Effects in Optocouplers (R A Reed et al.); The Effects of Space Radiation Exposure on Power MOSFETs: A Review (K Shenai et al.); Total Dose Effects in Linear Bipolar Integrated Circuits (H J Barnaby); Hardness Assurance for Commercial Microelectronics (R L Pease); Switching Oxide Traps (T R Oldham); Online and Realtime Dosimetry Using Optically Stimulated Luminescence (L Dusseau & J Gasiot); and other articles. Readership: Practitioners, researchers, managers and graduate students in electrical and electronic engineering, semiconductor science and technology, and microelectronics."


Testing at the Speed of Light

Testing at the Speed of Light

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2018-06-08

Total Pages: 89

ISBN-13: 030947082X

DOWNLOAD EBOOK

Spacecraft depend on electronic components that must perform reliably over missions measured in years and decades. Space radiation is a primary source of degradation, reliability issues, and potentially failure for these electronic components. Although simulation and modeling are valuable for understanding the radiation risk to microelectronics, there is no substitute for testing, and an increased use of commercial-off-the- shelf parts in spacecraft may actually increase requirements for testing, as opposed to simulation and modeling. Testing at the Speed of Light evaluates the nation's current capabilities and future needs for testing the effects of space radiation on microelectronics to ensure mission success and makes recommendations on how to provide effective stewardship of the necessary radiation test infrastructure for the foreseeable future.


Radiation Effects on Embedded Systems

Radiation Effects on Embedded Systems

Author: Raoul Velazco

Publisher: Springer Science & Business Media

Published: 2007-06-19

Total Pages: 273

ISBN-13: 140205646X

DOWNLOAD EBOOK

This volume provides an extensive overview of radiation effects on integrated circuits, offering major guidelines for coping with radiation effects on components. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, November 20-25, 2005.


Ionizing Radiation Effects in MOS Devices and Circuits

Ionizing Radiation Effects in MOS Devices and Circuits

Author: T. P. Ma

Publisher: John Wiley & Sons

Published: 1989-04-18

Total Pages: 616

ISBN-13: 9780471848936

DOWNLOAD EBOOK

The first comprehensive overview describing the effects of ionizing radiation on MOS devices, as well as how to design, fabricate, and test integrated circuits intended for use in a radiation environment. Also addresses process-induced radiation effects in the fabrication of high-density circuits. Reviews the history of radiation-hard technology, providing background information for those new to the field. Includes a comprehensive review of the literature and an annotated listing of research activities in radiation-hardness research.


Radiation Tolerant Electronics

Radiation Tolerant Electronics

Author: Paul Leroux

Publisher: MDPI

Published: 2019-08-26

Total Pages: 210

ISBN-13: 3039212796

DOWNLOAD EBOOK

Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.


Reliability And Radiation Effects In Compound Semiconductors

Reliability And Radiation Effects In Compound Semiconductors

Author: Allan H Johnston

Publisher: World Scientific

Published: 2010-04-27

Total Pages: 376

ISBN-13: 9814467650

DOWNLOAD EBOOK

This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms.It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.