Transform Methods for Solving Partial Differential Equations

Transform Methods for Solving Partial Differential Equations

Author: Dean G. Duffy

Publisher: CRC Press

Published: 2004-07-15

Total Pages: 727

ISBN-13: 1420035142

DOWNLOAD EBOOK

Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found ana


Transform Methods for Solving Partial Differential Equations

Transform Methods for Solving Partial Differential Equations

Author: Dean G. Duffy

Publisher: CRC Press

Published: 1994-02-16

Total Pages: 504

ISBN-13: 9780849373749

DOWNLOAD EBOOK

For most scientists and engineers, the only analytic technique for solving linear partial differential equations is separation of variables. In Transform Methods for Solving Partial Differential Equations, the author uses the power of complex variables to demonstrate how Laplace and Fourier transforms can be harnessed to solve many practical, everyday problems experienced by scientists and engineers. Unlike many mathematics texts, this book provides a step-by-step analysis of problems taken from scientific and engineering literature. Detailed solutions are given in the back of the book. This essential text/reference draws from the latest literature on transform methods to provide in-depth discussions on the joint transform problem, the Cagniard-de Hoop method, and the Wiener-Hopf technique. Some 1,500 references are included as well.


Transform Methods for Solving Partial Differential Equations, Second Edition

Transform Methods for Solving Partial Differential Equations, Second Edition

Author: Dean G. Duffy

Publisher: Chapman and Hall/CRC

Published: 2004-07-15

Total Pages: 728

ISBN-13: 9781584884514

DOWNLOAD EBOOK

Transform methods provide a bridge between the commonly used method of separation of variables and numerical techniques for solving linear partial differential equations. While in some ways similar to separation of variables, transform methods can be effective for a wider class of problems. Even when the inverse of the transform cannot be found analytically, numeric and asymptotic techniques now exist for their inversion, and because the problem retains some of its analytic aspect, one can gain greater physical insight than typically obtained from a purely numerical approach. Transform Methods for Solving Partial Differential Equations, Second Edition illustrates the use of Laplace, Fourier, and Hankel transforms to solve partial differential equations encountered in science and engineering. The author has expanded the second edition to provide a broader perspective on the applicability and use of transform methods and incorporated a number of significant refinements: New in the Second Edition: · Expanded scope that includes numerical methods and asymptotic techniques for inverting particularly complicated transforms · Discussions throughout the book that compare and contrast transform methods with separation of variables, asymptotic methods, and numerical techniques · Many added examples and exercises taken from a wide variety of scientific and engineering sources · Nearly 300 illustrations--many added to the problem sections to help readers visualize the physical problems · A revised format that makes the book easier to use as a reference: problems are classified according to type of region, type of coordinate system, and type of partial differential equation · Updated references, now arranged by subject instead of listed all together As reflected by the book's organization, content, and many examples, the author's focus remains firmly on applications. While the subject matter is classical, this book gives it a fresh, modern treatment that is exceptionally practical, eminently readable, and especially valuable to anyone solving problems in engineering and the applied sciences.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations

Author: James Kirkwood

Publisher: Academic Press

Published: 2012-01-20

Total Pages: 431

ISBN-13: 0123869110

DOWNLOAD EBOOK

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2018-01-12

Total Pages: 251

ISBN-13: 1351682210

DOWNLOAD EBOOK

The main focus of the book is to implement wavelet based transform methods for solving problems of fractional order partial differential equations arising in modelling real physical phenomena. It explores analytical and numerical approximate solution obtained by wavelet methods for both classical and fractional order partial differential equations.


Partial Differential Equations and Mathematica

Partial Differential Equations and Mathematica

Author: Prem K. Kythe

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 440

ISBN-13: 1482296322

DOWNLOAD EBOOK

Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.


Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva

Publisher: Springer Science & Business Media

Published: 2011-07-24

Total Pages: 372

ISBN-13: 370910517X

DOWNLOAD EBOOK

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).


Transforms and Partial Differential Equations(Combo)

Transforms and Partial Differential Equations(Combo)

Author: P. Sivaramakrishna Das

Publisher: Pearson Education India

Published:

Total Pages: 599

ISBN-13: 9353431107

DOWNLOAD EBOOK

Transforms and Partial Differential Equations, 6e is designed to provide a firm foundation on the basic concepts of partial differential equations, Fourier series analysis, Fourier series techniques in solving heat flow problems, Fourier transform techniques and Z-transforms. In their trademark student-friendly style, the authors have endeavored to provide an in-depth understanding of the important principles, methods and processes of obtaining results in a systematic way with emphasis on clarity and academic rigor. Features: • More than 320 solved examples • More than 250 exercises with answers • More than 150 Part A questions with answers • Plenty of hints for problems • Includes a free book containing FAQs Table of Contents: Preface Acknowledgements About the Authors 1. Partial Differential Equations 2. Fourier Series 3. Application of Partial Differential Equations 4. Fourier Transforms 5. Z-transforms and Difference Equations Formulae To Remember