This book constitutes the refereed proceedings of the 14th Conference on Advances in Autonomous Robotics, TAROS 2013, held in Oxford, UK, in August 2013. The 36 revised full papers presented together with 25 extended abstracts were carefully reviewed and selected from 89 submissions. The papers cover various topics such as artificial intelligence, bio-inspired and aerial robotics, computer vision, control, humanoid and robotic arm, swarm robotics, verification and ethics.
This book introduces concepts in mobile, autonomous robotics to 3rd-4th year students in Computer Science or a related discipline. The book covers principles of robot motion, forward and inverse kinematics of robotic arms and simple wheeled platforms, perception, error propagation, localization and simultaneous localization and mapping. The cover picture shows a wind-up toy that is smart enough to not fall off a table just using intelligent mechanism design and illustrate the importance of the mechanism in designing intelligent, autonomous systems. This book is open source, open to contributions, and released under a creative common license.
The second edition of a comprehensive introduction to all aspects of mobile robotics, from algorithms to mechanisms. Mobile robots range from the Mars Pathfinder mission's teleoperated Sojourner to the cleaning robots in the Paris Metro. This text offers students and other interested readers an introduction to the fundamentals of mobile robotics, spanning the mechanical, motor, sensory, perceptual, and cognitive layers the field comprises. The text focuses on mobility itself, offering an overview of the mechanisms that allow a mobile robot to move through a real world environment to perform its tasks, including locomotion, sensing, localization, and motion planning. It synthesizes material from such fields as kinematics, control theory, signal analysis, computer vision, information theory, artificial intelligence, and probability theory. The book presents the techniques and technology that enable mobility in a series of interacting modules. Each chapter treats a different aspect of mobility, as the book moves from low-level to high-level details. It covers all aspects of mobile robotics, including software and hardware design considerations, related technologies, and algorithmic techniques. This second edition has been revised and updated throughout, with 130 pages of new material on such topics as locomotion, perception, localization, and planning and navigation. Problem sets have been added at the end of each chapter. Bringing together all aspects of mobile robotics into one volume, Introduction to Autonomous Mobile Robots can serve as a textbook or a working tool for beginning practitioners. Curriculum developed by Dr. Robert King, Colorado School of Mines, and Dr. James Conrad, University of North Carolina-Charlotte, to accompany the National Instruments LabVIEW Robotics Starter Kit, are available. Included are 13 (6 by Dr. King and 7 by Dr. Conrad) laboratory exercises for using the LabVIEW Robotics Starter Kit to teach mobile robotics concepts.
Robotic Systems and Autonomous Platforms: Advances in Materials and Manufacturing showcases new materials and manufacturing methodologies for the enhancement of robotic and autonomous systems. Initial chapters explore how autonomous systems can enable new uses for materials, including innovations on different length scales, from nano, to macro and large systems. The means by which autonomous systems can enable new uses for manufacturing are also addressed, highlighting innovations in 3D additive manufacturing, printing of materials, novel synthesis of multifunctional materials, and robotic cooperation. Concluding themes deliver highly novel applications from the international academic, industrial and government sectors. This book will provide readers with a complete review of the cutting-edge advances in materials and manufacturing methodologies that could enhance the capabilities of robotic and autonomous systems. - Presents comprehensive coverage of materials and manufacturing technologies, as well as sections on related technology, such as sensing, communications, autonomy/control and actuation - Explores potential applications demonstrated by a selection of case-studies - Contains contributions from leading experts in the field
This book constitutes the refereed proceedings of the 12th Annual Conference Towards Autonomous Robotics Systems, TAROS 2011, held in Sheffield, UK, in August/September 2011. The 32 revised full papers presented together with 29 two-page abstracts were carefully reviewed and selected from 94 submissions. Among the topics addressed are robot navigation, robot learning, human-robot interaction, robot control, mobile robots, reinforcement learning, robot vehicles, swarm robotic systems, etc.
This book presents the state of the art in distributed autonomous systems composed of multiple robots, robotic modules, or robotic agents. Swarms in nature can not only adapt to their environments, but can also construct suitable habitats to their own advantage. Distributed autonomous robotic systems can do many things that its individuals cannot do alone. As the global pandemic was still ongoing, the 15th International Symposium on Distributed Autonomous Robotic Systems (DARS2021) was held on June 1–4, 2021, as an online meeting. The scope of DARS201 was to create a bridge between biologists and engineers interested in the distributed intelligence of living things and to establish a new academic field by integrating knowledge from both disciplines. Topics of DARS2021 were swarm intelligence, swarm robotics, multi-agent system, modular robotics, decentralized control, distributed system, etc. The papers in this book provide a very good overview of the state of the art in distributed autonomous robotic systems (DARS). They reflect current research themes in DARS with important contributions. We hope that this book helps to sustain the interest in DARS and triggers new research.
An introduction to the science and practice of autonomous robots that reviews over 300 current systems and examines the underlying technology. Autonomous robots are intelligent machines capable of performing tasks in the world by themselves, without explicit human control. Examples range from autonomous helicopters to Roomba, the robot vacuum cleaner. In this book, George Bekey offers an introduction to the science and practice of autonomous robots that can be used both in the classroom and as a reference for industry professionals. He surveys the hardware implementations of more than 300 current systems, reviews some of their application areas, and examines the underlying technology, including control, architectures, learning, manipulation, grasping, navigation, and mapping. Living systems can be considered the prototypes of autonomous systems, and Bekey explores the biological inspiration that forms the basis of many recent developments in robotics. He also discusses robot control issues and the design of control architectures. After an overview of the field that introduces some of its fundamental concepts, the book presents background material on hardware, control (from both biological and engineering perspectives), software architecture, and robot intelligence. It then examines a broad range of implementations and applications, including locomotion (wheeled, legged, flying, swimming, and crawling robots), manipulation (both arms and hands), localization, navigation, and mapping. The many case studies and specific applications include robots built for research, industry, and the military, among them underwater robotic vehicles, walking machines with four, six, and eight legs, and the famous humanoid robots Cog, Kismet, ASIMO, and QRIO. The book concludes with reflections on the future of robotics—the potential benefits as well as the possible dangers that may arise from large numbers of increasingly intelligent and autonomous robots.
Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systemscovers the main topics from the wide area of mobile robotics, explaining all applied theory and application. The book gives the reader a good foundation, enabling them to continue to more advanced topics. Several examples are included for better understanding, many of them accompanied by short MATLAB® script code making it easy to reuse in practical work. The book includes several examples of discussed methods and projects for wheeled mobile robots and some advanced methods for their control and localization. It is an ideal resource for those seeking an understanding of robotics, mechanics, and control, and for engineers and researchers in industrial and other specialized research institutions in the field of wheeled mobile robotics. Beginners with basic math knowledge will benefit from the examples, and engineers with an understanding of basic system theory and control will find it easy to follow the more demanding fundamental parts and advanced methods explained. - Offers comprehensive coverage of the essentials of the field that are suitable for both academics and practitioners - Includes several examples of the application of algorithms in simulations and real laboratory projects - Presents foundation in mobile robotics theory before continuing with more advanced topics - Self-sufficient to beginner readers, covering all important topics in the mobile robotics field - Contains specific topics on modeling, control, sensing, path planning, localization, design architectures, and multi-agent systems
The two volumes LNAI 11649 and LNAI 11650 constitute the refereed proceedings of the 20th Annual Conference "Towards Autonomous Robotics", TAROS 2019, held in London, UK, in July 2019. The 74 full papers and 12 short papers presented were carefully reviewed and selected from 101 submissions. The papers present and discuss significant findings and advances in autonomous robotics research and applications. They are organized in the following topical sections: robotic grippers and manipulation; soft robotics, sensing and mobile robots; robotic learning, mapping and planning; human-robot interaction; and robotic systems and applications.
Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. The goal of the International Symposium on Distributed Autonomous Robotic Systems (DARS) is to provide a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. This volume of proceedings include 47 original contributions presented at the 13th International Symposium on Distributed Autonomous Robotic Systems (DARS 2016), which was held at the Natural History Museum in London, UK, from November 7th to 9th, 2016. The selected papers in this volume are authored by leading researchers from around the world, thereby providing a broad coverage and perspective of the state-of-the-art technologies, algorithms, system architectures, and applications in distributed robotic systems. The book is organized into seven parts, representative of critical long-term and emerging research thrusts in the multi-robot community: Distributed Coverage and Exploration; Multi-Robot Control; Multi-Robot Estimation; Multi-Robot Planning; Modular Robots and Smart Materials; Swarm Robotics; and Multi-Robot Systems in Applications.