Autonomous Vehicle Maneuvering at the Limit of Friction

Autonomous Vehicle Maneuvering at the Limit of Friction

Author: Victor Fors

Publisher: Linköping University Electronic Press

Published: 2020-10-23

Total Pages: 60

ISBN-13: 9179297706

DOWNLOAD EBOOK

Without a driver to fall back on, a fully self-driving car needs to be able to handle any situation it can encounter. With the perspective of future safety systems, this research studies autonomous maneuvering at the tire-road friction limit. In these situations, the dynamics is highly nonlinear, and the tire-road parameters are uncertain. To gain insights into the optimal behavior of autonomous safety-critical maneuvers, they are analyzed using optimal control. Since analytical solutions of the studied optimal control problems are intractable, they are solved numerically. An optimization formulation reveals how the optimal behavior is influenced by the total amount of braking. By studying how the optimal trajectory relates to the attainable forces throughout a maneuver, it is found that maximizing the force in a certain direction is important. This is like the analytical solutions obtained for friction-limited particle models in earlier research, and it is shown to result in vehicle behavior close to the optimal also for a more complex model. Based on the insights gained from the optimal behavior, controllers for autonomous safety maneuvers are developed. These controllers are based on using acceleration-vector references obtained from friction-limited particle models. Exploiting that the individual tire forces tend to be close to their friction limits, the desired tire slip angles are determined for a given acceleration-vector reference. This results in controllers capable of operating at the limit of friction at a low computational cost and reduces the number of vehicle parameters used. For straight-line braking, ABS can intervene to reduce the braking distance without prior information about the road friction. Inspired by this, a controller that uses the available actuation according to the least friction necessary to avoid a collision is developed, resulting in autonomous collision avoidance without any estimation of the tire–road friction. Investigating time-optimal lane changes, it is found that a simple friction-limited particle model is insufficient to determine the desired acceleration vector, but including a jerk limit to account for the yaw dynamics is sufficient. To enable a tradeoff between braking and avoidance with a more general obstacle representation, the acceleration-vector reference is computed in a receding-horizon framework. The controllers developed in this thesis show great promise with low computational cost and performance not far from that obtained offline by using numerical optimization when evaluated in high-fidelity simulation.


Unsettled Issues in Determining Appropriate Modeling Fidelity for Automated Driving Systems Simulation

Unsettled Issues in Determining Appropriate Modeling Fidelity for Automated Driving Systems Simulation

Author: Sven Beiker

Publisher: SAE International

Published: 2019-12-06

Total Pages: 20

ISBN-13: 1468601172

DOWNLOAD EBOOK

This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of achieving optimal model fidelity for developing, validating, and verifying vehicles capable of automated driving. Three main issues are outlined that merit immediate interest: First, assuring that simulation models represent their real-world counterparts, how to quantify simulation model fidelity, and how to assess system risk. Second, developing a universal simulation model interface and language for verifying, simulating, and calibrating automated driving sensors. Third, characterizing and determining the different requirements for sensor, vehicle, environment, and human driver models. SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report need to be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed; second, prioritizing the issues requiring resolution; and, third, creating a plan to generate the necessary frameworks, practices, and protocols. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate key issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019007


Proceedings of Mechanical Engineering Research Day 2020

Proceedings of Mechanical Engineering Research Day 2020

Author: Mohd Fadzli Bin Abdollah

Publisher: Centre for Advanced Research on Energy

Published: 2020-12-01

Total Pages: 414

ISBN-13: 9672454368

DOWNLOAD EBOOK

This e-book is a compilation of 170 articles presented at the 7th Mechanical Engineering Research Day (MERD'20) - Kampus Teknologi UTeM (virtual), Melaka, Malaysia on 16 December 2020.


Towards Connected and Autonomous Vehicle Highways

Towards Connected and Autonomous Vehicle Highways

Author: Umar Zakir Abdul Hamid

Publisher: Springer Nature

Published: 2021-06-17

Total Pages: 345

ISBN-13: 3030660427

DOWNLOAD EBOOK

This book combines comprehensive multi-angle discussions on fully connected and automated vehicle highway implementation. It covers the current progress of the works towards autonomous vehicle highway development, which encompasses the discussion on the technical, social, and policy as well as security aspects of Connected and Autonomous Vehicles (CAV) topics. This, in return, will be beneficial to a vast amount of readers who are interested in the topics of CAV, Automated Highway and Smart City, among many others. Topics include, but are not limited to, Autonomous Vehicle in the Smart City, Automated Highway, Smart-Cities Transportation, Mobility as a Service, Intelligent Transportation Systems, Data Management of Connected and Autonomous Vehicle, Autonomous Trucks, and Autonomous Freight Transportation. Brings together contributions discussing the latest research in full automated highway implementation; Discusses topics such as autonomous vehicles, intelligent transportation systems, and smart highways; Features contributions from researchers, academics, and professionals from a broad perspective.


Towards Autonomous Robotic Systems

Towards Autonomous Robotic Systems

Author: Kaspar Althoefer

Publisher: Springer

Published: 2019-06-28

Total Pages: 480

ISBN-13: 3030238075

DOWNLOAD EBOOK

The two volumes LNAI 11649 and LNAI 11650 constitute the refereed proceedings of the 20th Annual Conference "Towards Autonomous Robotics", TAROS 2019, held in London, UK, in July 2019. The 74 full papers and 12 short papers presented were carefully reviewed and selected from 101 submissions. The papers present and discuss significant findings and advances in autonomous robotics research and applications. They are organized in the following topical sections: robotic grippers and manipulation; soft robotics, sensing and mobile robots; robotic learning, mapping and planning; human-robot interaction; and robotic systems and applications.


Dynamics of Vehicles on Roads and Tracks Vol 1

Dynamics of Vehicles on Roads and Tracks Vol 1

Author: Maksym Spiryagin

Publisher: CRC Press

Published: 2017-12-06

Total Pages: 648

ISBN-13: 1351057243

DOWNLOAD EBOOK

The International Symposium on Dynamics of Vehicles on Roads and Tracks is the leading international gathering of scientists and engineers from academia and industry in the field of ground vehicle dynamics to present and exchange their latest innovations and breakthroughs. Established in Vienna in 1977, the International Association of Vehicle System Dynamics (IAVSD) has since held its biennial symposia throughout Europe and in the USA, Canada, Japan, South Africa and China. The main objectives of IAVSD are to promote the development of the science of vehicle dynamics and to encourage engineering applications of this field of science, to inform scientists and engineers on the current state-of-the-art in the field of vehicle dynamics and to broaden contacts among persons and organisations of the various countries engaged in scientific research and development in the field of vehicle dynamics and related areas. IAVSD 2017, the 25th Symposium of the International Association of Vehicle System Dynamics was hosted by the Centre for Railway Engineering at Central Queensland University, Rockhampton, Australia in August 2017. The symposium focused on the following topics related to road and rail vehicles and trains: dynamics and stability; vibration and comfort; suspension; steering; traction and braking; active safety systems; advanced driver assistance systems; autonomous road and rail vehicles; adhesion and friction; wheel-rail contact; tyre-road interaction; aerodynamics and crosswind; pantograph-catenary dynamics; modelling and simulation; driver-vehicle interaction; field and laboratory testing; vehicle control and mechatronics; performance and optimization; instrumentation and condition monitoring; and environmental considerations. Providing a comprehensive review of the latest innovative developments and practical applications in road and rail vehicle dynamics, the 213 papers now published in these proceedings will contribute greatly to a better understanding of related problems and will serve as a reference for researchers and engineers active in this specialised field. Volume 1 contains 78 papers under the subject heading Road.


Intelligent Vehicles

Intelligent Vehicles

Author: David Fernández-Llorca

Publisher: MDPI

Published: 2020-11-24

Total Pages: 752

ISBN-13: 3039434020

DOWNLOAD EBOOK

This book presents the results of the successful Sensors Special Issue on Intelligent Vehicles that received submissions between March 2019 and May 2020. The Guest Editors of this Special Issue are Dr. David Fernández-Llorca, Dr. Ignacio Parra-Alonso, Dr. Iván García-Daza and Dr. Noelia Parra-Alonso, all from the Computer Engineering Department at the University of Alcalá (Madrid, Spain). A total of 32 manuscripts were finally accepted between 2019 and 2020, presented by top researchers from all over the world. The reader will find a well-representative set of current research and developments related to sensors and sensing for intelligent vehicles. The topics of the published manuscripts can be grouped into seven main categories: (1) assistance systems and automatic vehicle operation, (2) vehicle positioning and localization, (3) fault diagnosis and fail-x systems, (4) perception and scene understanding, (5) smart regenerative braking systems for electric vehicles, (6) driver behavior modeling and (7) intelligent sensing. We, the Guest Editors, hope that the readers will find this book to contain interesting papers for their research, papers that they will enjoy reading as much as we have enjoyed organizing this Special Issue


Advanced Autonomous Vehicle Design for Severe Environments

Advanced Autonomous Vehicle Design for Severe Environments

Author: V.V. Vantsevich

Publisher: IOS Press

Published: 2015-10-20

Total Pages: 408

ISBN-13: 1614995761

DOWNLOAD EBOOK

Classical vehicle dynamics, which is the basis for manned ground vehicle design, has exhausted its potential for providing novel design concepts to a large degree. At the same time, unmanned ground vehicle (UGV) dynamics is still in its infancy and is currently being developed using general analytical dynamics principles with very little input from actual vehicle dynamics theory. This technical book presents outcomes from the NATO Advanced Study Institute (ASI) ‘Advanced Autonomous Vehicle Design for Severe Environments’, held in Coventry, UK, in July 2014. The ASI provided a platform for world class professionals to meet and discuss leading-edge research, engineering accomplishments and future trends in manned and unmanned ground vehicle dynamics, terrain mobility and energy efficiency. The outcomes of this collective effort serve as an analytical foundation for autonomous vehicle design. Topics covered include: historical aspects, pivotal accomplishments and the analysis of future trends in on- and off-road manned and unmanned vehicle dynamics; terramechanics, soil dynamic characteristics, uncertainties and stochastic characteristics of vehicle-environment interaction for agile vehicle dynamics modeling; new methods and techniques in on-line control and learning for vehicle autonomy; fundamentals of agility and severe environments; mechatronics and cyber-physics issues of agile vehicle dynamics to design for control, energy harvesting and cyber security; and case studies of agile and inverse vehicle dynamics and vehicle systems design, including optimisation of suspension and driveline systems. The book targets graduate students, who desire to advance further in leading-edge vehicle dynamics topics in manned and unmanned ground vehicles, PhD students continuing their research work and building advanced curricula in academia and industry, and researchers in government agencies and private companies.