Towards an Information Theory of Complex Networks

Towards an Information Theory of Complex Networks

Author: Matthias Dehmer

Publisher: Springer Science & Business Media

Published: 2011-08-26

Total Pages: 409

ISBN-13: 0817649042

DOWNLOAD EBOOK

For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoretic, and statistical methods as a way to better understand and characterize real-world networks. This volume is the first to present a self-contained, comprehensive overview of information-theoretic models of complex networks with an emphasis on applications. As such, it marks a first step toward establishing advanced statistical information theory as a unified theoretical basis of complex networks for all scientific disciplines and can serve as a valuable resource for a diverse audience of advanced students and professional scientists. While it is primarily intended as a reference for research, the book could also be a useful supplemental graduate text in courses related to information science, graph theory, machine learning, and computational biology, among others.


Network Information Theory

Network Information Theory

Author: Abbas El Gamal

Publisher: Cambridge University Press

Published: 2011-12-08

Total Pages: 666

ISBN-13: 1139503146

DOWNLOAD EBOOK

This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.


Graph Theory and Complex Networks

Graph Theory and Complex Networks

Author: Maarten van Steen

Publisher: Maarten Van Steen

Published: 2010

Total Pages: 285

ISBN-13: 9789081540612

DOWNLOAD EBOOK

This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks.


Structural Analysis of Complex Networks

Structural Analysis of Complex Networks

Author: Matthias Dehmer

Publisher: Springer Science & Business Media

Published: 2010-10-14

Total Pages: 493

ISBN-13: 0817647899

DOWNLOAD EBOOK

Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science, machine learning, artificial intelligence, computational and systems biology, cognitive science, computational linguistics, and mathematical chemistry. It may also be used as a supplementary textbook in graduate-level seminars on structural graph analysis, complex networks, or network-based machine learning methods.


Handbook of Optimization in Complex Networks

Handbook of Optimization in Complex Networks

Author: My T. Thai

Publisher: Springer Science & Business Media

Published: 2011-11-25

Total Pages: 539

ISBN-13: 1461408571

DOWNLOAD EBOOK

Complex Social Networks is a newly emerging (hot) topic with applications in a variety of domains, such as communication networks, engineering networks, social networks, and biological networks. In the last decade, there has been an explosive growth of research on complex real-world networks, a theme that is becoming pervasive in many disciplines, ranging from mathematics and computer science to the social and biological sciences. Optimization of complex communication networks requires a deep understanding of the interplay between the dynamics of the physical network and the information dynamics within the network. Although there are a few books addressing social networks or complex networks, none of them has specially focused on the optimization perspective of studying these networks. This book provides the basic theory of complex networks with several new mathematical approaches and optimization techniques to design and analyze dynamic complex networks. A wide range of applications and optimization problems derived from research areas such as cellular and molecular chemistry, operations research, brain physiology, epidemiology, and ecology.


Graph Spectra for Complex Networks

Graph Spectra for Complex Networks

Author: Piet van Mieghem

Publisher: Cambridge University Press

Published: 2010-12-02

Total Pages: 363

ISBN-13: 1139492276

DOWNLOAD EBOOK

Analyzing the behavior of complex networks is an important element in the design of new man-made structures such as communication systems and biologically engineered molecules. Because any complex network can be represented by a graph, and therefore in turn by a matrix, graph theory has become a powerful tool in the investigation of network performance. This self-contained 2010 book provides a concise introduction to the theory of graph spectra and its applications to the study of complex networks. Covering a range of types of graphs and topics important to the analysis of complex systems, this guide provides the mathematical foundation needed to understand and apply spectral insight to real-world systems. In particular, the general properties of both the adjacency and Laplacian spectrum of graphs are derived and applied to complex networks. An ideal resource for researchers and students in communications networking as well as in physics and mathematics.


The Structure of Complex Networks

The Structure of Complex Networks

Author: Ernesto Estrada

Publisher: Oxford University Press

Published: 2012

Total Pages: 478

ISBN-13: 019959175X

DOWNLOAD EBOOK

The book integrates approaches from mathematics, physics and computer sciences to analyse the organisation of complex networks. Every organisational principle of networks is defined, quantified and then analysed for its influences on the properties and functions of molecular, biological, ecological and social networks.


Complex Networks & Their Applications VI

Complex Networks & Their Applications VI

Author: Chantal Cherifi

Publisher: Springer

Published: 2017-11-24

Total Pages: 1290

ISBN-13: 331972150X

DOWNLOAD EBOOK

This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the VI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2017), which took place in Lyon on November 29 – December 1, 2017. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and ecological networks and technological networks.


Air Route Networks Through Complex Networks Theory

Air Route Networks Through Complex Networks Theory

Author: Jose M. Sallan

Publisher: Elsevier

Published: 2019-11-06

Total Pages: 254

ISBN-13: 0128126663

DOWNLOAD EBOOK

Air Route Networks through Complex Networks Theory connects theory research with network connectivity analysis, providing practitioners with the tools they need to develop more efficient, resilient and profitable air route networks. The book helps airline route planners and executives create more robust route networks that are less vulnerable to disruptions, such as node isolation. The book further explores errors and attacks in complex networks, strategies for detecting critical nodes and cascading failure models to assess and maximize robustness. The book explains how to measure air route network connectivity with complex network representations. Air transport is among the most dynamic and toughest competition industries in today's global economy. The quality of air route network design is a key strategic factor in an airline's viability. These robust networks provide for more stable and secure carrier operations vs. those based simply on existing supply and demand volumes. Node-specific and network-specific representations are covered, along with in-depth coverage of connectivity in special and temporal networks. These collective tools serve as a guide for practitioners seeking to apply complex network theory to the airline industry. - Presents complex networks theory research results applied to airline transportation networks - Examines airline network robustness in the face of disruptions, providing strategies for detecting critical nodes of air transport networks - Provides historical perspective on the economic, political, technical, and geographical constraints that influence airline route portfolios - Connects data from valuable tools, such as navpoints, area control centers (ACC), and flight information centers, with air network modeling - Studies spreading-related phenomena, such as rumors, and disease contagions, and how these affect the airline industry


Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms

Author: David J. C. MacKay

Publisher: Cambridge University Press

Published: 2003-09-25

Total Pages: 694

ISBN-13: 9780521642989

DOWNLOAD EBOOK

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.