Topology In Condensed Matter: An Introduction

Topology In Condensed Matter: An Introduction

Author: Miguel A N Araujo

Publisher: World Scientific

Published: 2021-05-19

Total Pages: 276

ISBN-13: 9811237239

DOWNLOAD EBOOK

This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.


Topology in Condensed Matter

Topology in Condensed Matter

Author: Michael I. Monastyrsky

Publisher: Springer Science & Business Media

Published: 2006-02-04

Total Pages: 263

ISBN-13: 3540312641

DOWNLOAD EBOOK

This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.


A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

A Brief Introduction to Topology and Differential Geometry in Condensed Matter Physics

Author: Antonio Sergio Teixeira Pires

Publisher: Morgan & Claypool Publishers

Published: 2019-03-21

Total Pages: 171

ISBN-13: 1643273744

DOWNLOAD EBOOK

In the last years there have been great advances in the applications of topology and differential geometry to problems in condensed matter physics. Concepts drawn from topology and geometry have become essential to the understanding of several phenomena in the area. Physicists have been creative in producing models for actual physical phenomena which realize mathematically exotic concepts and new phases have been discovered in condensed matter in which topology plays a leading role. An important classification paradigm is the concept of topological order, where the state characterizing a system does not break any symmetry, but it defines a topological phase in the sense that certain fundamental properties change only when the system passes through a quantum phase transition. The main purpose of this book is to provide a brief, self-contained introduction to some mathematical ideas and methods from differential geometry and topology, and to show a few applications in condensed matter. It conveys to physicists the basis for many mathematical concepts, avoiding the detailed formality of most textbooks.


Topology and Condensed Matter Physics

Topology and Condensed Matter Physics

Author: Somendra Mohan Bhattacharjee

Publisher: Springer

Published: 2017-12-20

Total Pages: 519

ISBN-13: 9811068410

DOWNLOAD EBOOK

This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field. The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a quick, but more-or-less complete, review of topology. The focus is on explaining fundamental concepts rather than dwelling on details of proofs while retaining the mathematical flavour. There is an overview chapter at the beginning and a recapitulation chapter on group theory. The physics section starts with an introduction and then goes on to topics in quantum mechanics, statistical mechanics of polymers, knots, and vertex models, solid state physics, exotic excitations such as Dirac quasiparticles, Majorana modes, Abelian and non-Abelian anyons. Quantum spin liquids and quantum information-processing are also covered in some detail.


Topological Phases of Matter

Topological Phases of Matter

Author: Roderich Moessner

Publisher: Cambridge University Press

Published: 2021-04-29

Total Pages: 393

ISBN-13: 1107105536

DOWNLOAD EBOOK

This important graduate level text unites the physical mechanisms behind the phenomena of topological matter within a theoretical framework.


A Short Course on Topological Insulators

A Short Course on Topological Insulators

Author: János K. Asbóth

Publisher: Springer

Published: 2016-02-22

Total Pages: 176

ISBN-13: 3319256076

DOWNLOAD EBOOK

This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.


Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors

Author: B. Andrei Bernevig

Publisher: Princeton University Press

Published: 2013-04-07

Total Pages: 264

ISBN-13: 1400846730

DOWNLOAD EBOOK

This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.


Topological Insulators

Topological Insulators

Author: Shun-Qing Shen

Publisher: Springer Science & Business Media

Published: 2013-01-11

Total Pages: 234

ISBN-13: 364232858X

DOWNLOAD EBOOK

Topological insulators are insulating in the bulk, but process metallic states present around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, the first of its kind on topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological insulators and related areas. Shun-Qing Shen is a Professor at the Department of Physics, the University of Hong Kong, China.


Condensed Matter Field Theory

Condensed Matter Field Theory

Author: Alexander Altland

Publisher: Cambridge University Press

Published: 2010-03-11

Total Pages: 785

ISBN-13: 0521769752

DOWNLOAD EBOOK

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.


Quantum Field Theory and Condensed Matter

Quantum Field Theory and Condensed Matter

Author: Ramamurti Shankar

Publisher: Cambridge University Press

Published: 2017-08-31

Total Pages: 557

ISBN-13: 1108363989

DOWNLOAD EBOOK

Providing a broad review of many techniques and their application to condensed matter systems, this book begins with a review of thermodynamics and statistical mechanics, before moving onto real and imaginary time path integrals and the link between Euclidean quantum mechanics and statistical mechanics. A detailed study of the Ising, gauge-Ising and XY models is included. The renormalization group is developed and applied to critical phenomena, Fermi liquid theory and the renormalization of field theories. Next, the book explores bosonization and its applications to one-dimensional fermionic systems and the correlation functions of homogeneous and random-bond Ising models. It concludes with Bohm–Pines and Chern–Simons theories applied to the quantum Hall effect. Introducing the reader to a variety of techniques, it opens up vast areas of condensed matter theory for both graduate students and researchers in theoretical, statistical and condensed matter physics.