Topological Modular Forms

Topological Modular Forms

Author: Christopher L. Douglas

Publisher: American Mathematical Soc.

Published: 2014-12-04

Total Pages: 353

ISBN-13: 1470418843

DOWNLOAD EBOOK

The theory of topological modular forms is an intricate blend of classical algebraic modular forms and stable homotopy groups of spheres. The construction of this theory combines an algebro-geometric perspective on elliptic curves over finite fields with techniques from algebraic topology, particularly stable homotopy theory. It has applications to and connections with manifold topology, number theory, and string theory. This book provides a careful, accessible introduction to topological modular forms. After a brief history and an extended overview of the subject, the book proper commences with an exposition of classical aspects of elliptic cohomology, including background material on elliptic curves and modular forms, a description of the moduli stack of elliptic curves, an explanation of the exact functor theorem for constructing cohomology theories, and an exploration of sheaves in stable homotopy theory. There follows a treatment of more specialized topics, including localization of spectra, the deformation theory of formal groups, and Goerss-Hopkins obstruction theory for multiplicative structures on spectra. The book then proceeds to more advanced material, including discussions of the string orientation, the sheaf of spectra on the moduli stack of elliptic curves, the homotopy of topological modular forms, and an extensive account of the construction of the spectrum of topological modular forms. The book concludes with the three original, pioneering and enormously influential manuscripts on the subject, by Hopkins, Miller, and Mahowald.


The Adams Spectral Sequence for Topological Modular Forms

The Adams Spectral Sequence for Topological Modular Forms

Author: Robert R. Bruner

Publisher: American Mathematical Soc.

Published: 2021-09-30

Total Pages: 690

ISBN-13: 1470456745

DOWNLOAD EBOOK

The connective topological modular forms spectrum, tmf, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of tmf and several tmf-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The H∞ ring structure of the sphere and of tmf are used to determine many differentials and relations.


Modular Forms, a Computational Approach

Modular Forms, a Computational Approach

Author: William A. Stein

Publisher: American Mathematical Soc.

Published: 2007-02-13

Total Pages: 290

ISBN-13: 0821839608

DOWNLOAD EBOOK

This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.


The Adams Spectral Sequence for Topological Modular Forms

The Adams Spectral Sequence for Topological Modular Forms

Author: Robert R. Bruner

Publisher: American Mathematical Society

Published: 2021-12-23

Total Pages: 690

ISBN-13: 1470469588

DOWNLOAD EBOOK

The connective topological modular forms spectrum, $tmf$, is in a sense initial among elliptic spectra, and as such is an important link between the homotopy groups of spheres and modular forms. A primary goal of this volume is to give a complete account, with full proofs, of the homotopy of $tmf$ and several $tmf$-module spectra by means of the classical Adams spectral sequence, thus verifying, correcting, and extending existing approaches. In the process, folklore results are made precise and generalized. Anderson and Brown-Comenetz duality, and the corresponding dualities in homotopy groups, are carefully proved. The volume also includes an account of the homotopy groups of spheres through degree 44, with complete proofs, except that the Adams conjecture is used without proof. Also presented are modern stable proofs of classical results which are hard to extract from the literature. Tools used in this book include a multiplicative spectral sequence generalizing a construction of Davis and Mahowald, and computer software which computes the cohomology of modules over the Steenrod algebra and products therein. Techniques from commutative algebra are used to make the calculation precise and finite. The $H$-infinity ring structure of the sphere and of $tmf$ are used to determine many differentials and relations.


Some Applications of Modular Forms

Some Applications of Modular Forms

Author: Peter Sarnak

Publisher: Cambridge University Press

Published: 1990-11-15

Total Pages: 124

ISBN-13: 1316582442

DOWNLOAD EBOOK

The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.


The 1-2-3 of Modular Forms

The 1-2-3 of Modular Forms

Author: Jan Hendrik Bruinier

Publisher: Springer Science & Business Media

Published: 2008-02-10

Total Pages: 273

ISBN-13: 3540741194

DOWNLOAD EBOOK

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.


Manifolds and Modular Forms

Manifolds and Modular Forms

Author: Friedrich Hirzebruch

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 216

ISBN-13: 3663107264

DOWNLOAD EBOOK

This book provides a comprehensive introduction to the theory of elliptic genera due to Ochanine, Landweber, Stong, and others. The theory describes a new cobordism invariant for manifolds in terms of modular forms. The book evolved from notes of a course given at the University of Bonn. After providing some background material elliptic genera are constructed, including the classical genera signature and the index of the Dirac operator as special cases. Various properties of elliptic genera are discussed, especially their behaviour in fibre bundles and rigidity for group actions. For stably almost complex manifolds the theory is extended to elliptic genera of higher level. The text is in most parts self-contained. The results are illustrated by explicit examples and by comparison with well-known theorems. The relevant aspects of the theory of modular forms are derived in a seperate appendix, providing also a useful reference for mathematicians working in this field.


Geometric Modular Forms and Elliptic Curves

Geometric Modular Forms and Elliptic Curves

Author: Haruzo Hida

Publisher: World Scientific

Published: 2012

Total Pages: 468

ISBN-13: 9814368652

DOWNLOAD EBOOK

1. An algebro-geometric tool box. 1.1. Sheaves. 1.2. Schemes. 1.3. Projective schemes. 1.4. Categories and functors. 1.5. Applications of the key-lemma. 1.6. Group schemes. 1.7. Cartier duality. 1.8. Quotients by a group scheme. 1.9. Morphisms. 1.10. Cohomology of coherent sheaves. 1.11. Descent. 1.12. Barsotti-Tate groups. 1.13. Formal scheme -- 2. Elliptic curves. 2.1. Curves and divisors. 2.2. Elliptic curves. 2.3. Geometric modular forms of level 1. 2.4. Elliptic curves over C. 2.5. Elliptic curves over p-adic fields. 2.6. Level structures. 2.7. L-functions of elliptic curves. 2.8. Regularity. 2.9. p-ordinary moduli problems. 2.10. Deformation of elliptic curves -- 3. Geometric modular forms. 3.1. Integrality. 3.2. Vertical control theorem. 3.3. Action of GL(2) on modular forms -- 4. Jacobians and Galois representations. 4.1. Jacobians of stable curves. 4.2. Modular Galois representations. 4.3. Fullness of big Galois representations -- 5. Modularity problems. 5.1. Induced and extended Galois representations. 5.2. Some other solutions. 5.3. Modularity of Abelian Q-varieties


From Number Theory to Physics

From Number Theory to Physics

Author: Michel Waldschmidt

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 702

ISBN-13: 3662028387

DOWNLOAD EBOOK

The present book contains fourteen expository contributions on various topics connected to Number Theory, or Arithmetics, and its relationships to Theoreti cal Physics. The first part is mathematically oriented; it deals mostly with ellip tic curves, modular forms, zeta functions, Galois theory, Riemann surfaces, and p-adic analysis. The second part reports on matters with more direct physical interest, such as periodic and quasiperiodic lattices, or classical and quantum dynamical systems. The contribution of each author represents a short self-contained course on a specific subject. With very few prerequisites, the reader is offered a didactic exposition, which follows the author's original viewpoints, and often incorpo rates the most recent developments. As we shall explain below, there are strong relationships between the different chapters, even though every single contri bution can be read independently of the others. This volume originates in a meeting entitled Number Theory and Physics, which took place at the Centre de Physique, Les Houches (Haute-Savoie, France), on March 7 - 16, 1989. The aim of this interdisciplinary meeting was to gather physicists and mathematicians, and to give to members of both com munities the opportunity of exchanging ideas, and to benefit from each other's specific knowledge, in the area of Number Theory, and of its applications to the physical sciences. Physicists have been given, mostly through the program of lectures, an exposition of some of the basic methods and results of Num ber Theory which are the most actively used in their branch.


Elliptic Curves, Modular Forms, and Their L-functions

Elliptic Curves, Modular Forms, and Their L-functions

Author: Álvaro Lozano-Robledo

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 217

ISBN-13: 0821852426

DOWNLOAD EBOOK

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some motivating problems and includes numerous concrete examples throughout the text, often involving actual numbers, such as 3, 4, 5, $\frac{3344161}{747348}$, and $\frac{2244035177043369699245575130906674863160948472041} {8912332268928859588025535178967163570016480830}$. The theories of elliptic curves, modular forms, and $L$-functions are too vast to be covered in a single volume, and their proofs are outside the scope of the undergraduate curriculum. However, the primary objects of study, the statements of the main theorems, and their corollaries are within the grasp of advanced undergraduates. This book concentrates on motivating the definitions, explaining the statements of the theorems and conjectures, making connections, and providing lots of examples, rather than dwelling on the hard proofs. The book succeeds if, after reading the text, students feel compelled to study elliptic curves and modular forms in all their glory.