Topological Invariants of Plane Curves and Caustics

Topological Invariants of Plane Curves and Caustics

Author: Vladimir Igorevich Arnolʹd

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 70

ISBN-13: 0821803085

DOWNLOAD EBOOK

This book describes recent progress in the topological study of plane curves. The theory of plane curves is much richer than knot theory, which may be considered the commutative version of the theory of plane curves. This study is based on singularity theory: the infinite-dimensional space of curves is subdivided by the discriminant hypersurfaces into parts consisting of generic curves of the same type. The invariants distinguishing the types are defined by their jumps at the crossings of these hypersurfaces. Arnold describes applications to the geometry of caustics and of wavefronts in symplectic and contact geometry. These applications extend the classical four-vertex theorem of elementary plane geometry to estimates on the minimal number of cusps necessary for the reversion of a wavefront and to generalizations of the last geometrical theorem of Jacobi on conjugated points on convex surfaces. These estimates open a new chapter in symplectic and contact topology: the theory of Lagrangian and Legendrian collapses, providing an unusual and far-reaching higher-dimensional extension of Sturm theory of the oscillations of linear combinations of eigenfunctions.


Differential and Symplectic Topology of Knots and Curves

Differential and Symplectic Topology of Knots and Curves

Author: Serge Tabachnikov

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 530

ISBN-13: 9780821813546

DOWNLOAD EBOOK

This book presents a collection of papers on two related topics: topology of knots and knot-like objects (such as curves on surfaces) and topology of Legendrian knots and links in 3-dimensional contact manifolds. Featured is the work of international experts in knot theory ("quantum" knot invariants, knot invariants of finite type), in symplectic and contact topology, and in singularity theory. The interplay of diverse methods from these fields makes this volume unique in the study of Legendrian knots and knot-like objects such as wave fronts. A particularly enticing feature of the volume is its international significance. The volume successfully embodies a fine collaborative effort by worldwide experts from Belgium, France, Germany, Israel, Japan, Poland, Russia, Sweden, the UK, and the US.


Hamiltonian Systems with Three or More Degrees of Freedom

Hamiltonian Systems with Three or More Degrees of Freedom

Author: Carles Simó

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 681

ISBN-13: 940114673X

DOWNLOAD EBOOK

A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.


Topological Methods in Hydrodynamics

Topological Methods in Hydrodynamics

Author: Vladimir I. Arnold

Publisher: Springer Science & Business Media

Published: 2008-01-08

Total Pages: 376

ISBN-13: 0387225897

DOWNLOAD EBOOK

The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.


Topology and Physics

Topology and Physics

Author: Kevin Lin

Publisher: World Scientific

Published: 2008

Total Pages: 466

ISBN-13: 981281910X

DOWNLOAD EBOOK

This unique volume, resulting from a conference at the Chern Institute of Mathematics dedicated to the memory of Xiao-Song Lin, presents a broad connection between topology and physics as exemplified by the relationship between low-dimensional topology and quantum field theory.The volume includes works on picture (2+1)-TQFTs and their applications to quantum computing, Berry phase and Yang?Baxterization of the braid relation, finite type invariant of knots, categorification and Khovanov homology, Gromov?Witten type invariants, twisted Alexander polynomials, Faddeev knots, generalized Ricci flow, Calabi?Yau problems for CR manifolds, Milnor's conjecture on volume of simplexes, Heegaard genera of 3-manifolds, and the (A,B)-slice problem. It also includes five unpublished papers of Xiao-Song Lin and various speeches related to the memorial conference.


Shape Reconstruction from Apparent Contours

Shape Reconstruction from Apparent Contours

Author: Giovanni Bellettini

Publisher: Springer

Published: 2015-02-25

Total Pages: 385

ISBN-13: 3662451913

DOWNLOAD EBOOK

Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.


Topology And Physics - Proceedings Of The Nankai International Conference In Memory Of Xiao-song Lin

Topology And Physics - Proceedings Of The Nankai International Conference In Memory Of Xiao-song Lin

Author: Zhenghan Wang

Publisher: World Scientific

Published: 2008-08-11

Total Pages: 466

ISBN-13: 9814470651

DOWNLOAD EBOOK

This unique volume, resulting from a conference at the Chern Institute of Mathematics dedicated to the memory of Xiao-Song Lin, presents a broad connection between topology and physics as exemplified by the relationship between low-dimensional topology and quantum field theory.The volume includes works on picture (2+1)-TQFTs and their applications to quantum computing, Berry phase and Yang-Baxterization of the braid relation, finite type invariant of knots, categorification and Khovanov homology, Gromov-Witten type invariants, twisted Alexander polynomials, Faddeev knots, generalized Ricci flow, Calabi-Yau problems for CR manifolds, Milnor's conjecture on volume of simplexes, Heegaard genera of 3-manifolds, and the (A,B)-slice problem. It also includes five unpublished papers of Xiao-Song Lin and various speeches related to the memorial conference.


Singularities

Singularities

Author: Vladimir I. Arnold

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 475

ISBN-13: 3034887701

DOWNLOAD EBOOK

In July 1996, a conference was organized by the editors of this volume at the Mathematische Forschungsinstitut Oberwolfach to honour Egbert Brieskorn on the occasion of his 60th birthday. Most of the mathematicians invited to the conference have been influenced in one way or another by Brieskorn's work in singularity theory. It was the first time that so many people from the Russian school could be present at a conference in singularity theory outside Russia. This volume contains papers on singularity theory and its applications, written by participants of the conference. In many cases, they are extended versions of the talks presented there. The diversity of subjects of the contributions reflects singularity theory's relevance to topology, analysis and geometry, combining ideas and techniques from all of these fields, as well as demonstrating the breadth of Brieskorn's own interests. This volume contains papers on singularity theory and its applications, written by participants of the conference. In many cases, they are extended versions of the talks presented there. The diversity of subjects of the contributions reflects singularity theory's relevance to topology, analysis and geometry, combining ideas and techniques from all of these fields, as well as demonstrates the breadth of Brieskorn's own interests.


Mathematical Constants II

Mathematical Constants II

Author: Steven R. Finch

Publisher: Cambridge University Press

Published: 2003

Total Pages: 783

ISBN-13: 1108470599

DOWNLOAD EBOOK

Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.718 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.