Part I (eleven chapters) of this text for graduate students provides a Survey of topological fields, while Part II (five chapters) provides a relatively more idiosyncratic account of valuation theory.
Aimed at those acquainted with basic point-set topology and algebra, this text goes up to the frontiers of current research in topological fields (more precisely, topological rings that algebraically are fields).The reader is given enough background to tackle the current literature without undue additional preparation. Many results not in the text (and many illustrations by example of theorems in the text) are included among the exercises. Sufficient hints for the solution of the exercises are offered so that solving them does not become a major research effort for the reader. A comprehensive bibliography completes the volume.
This text offers an overview of the basic theories and techniques of functional analysis and its applications. It contains topics such as the fixed point theory starting from Ky Fan's KKM covering and quasi-Schwartz operators. It also includes over 200 exercises to reinforce important concepts.;The author explores three fundamental results on Banach spaces, together with Grothendieck's structure theorem for compact sets in Banach spaces (including new proofs for some standard theorems) and Helley's selection theorem. Vector topologies and vector bornologies are examined in parallel, and their internal and external relationships are studied. This volume also presents recent developments on compact and weakly compact operators and operator ideals; and discusses some applications to the important class of Schwartz spaces.;This text is designed for a two-term course on functional analysis for upper-level undergraduate and graduate students in mathematics, mathematical physics, economics and engineering. It may also be used as a self-study guide by researchers in these disciplines.
Introduction In the last few years a few monographs dedicated to the theory of topolog ical rings have appeared [Warn27], [Warn26], [Wies 19], [Wies 20], [ArnGM]. Ring theory can be viewed as a particular case of Z-algebras. Many general results true for rings can be extended to algebras over commutative rings. In topological algebra the structure theory for two classes of topological algebras is well developed: Banach algebras; and locally compact rings. The theory of Banach algebras uses results of Banach spaces, and the theory of locally compact rings uses the theory of LCA groups. As far as the author knows, the first papers on the theory of locally compact rings were [Pontr1]' [J1], [J2], [JT], [An], lOt], [K1]' [K2]' [K3], [K4], [K5], [K6]. Later two papers, [GS1,GS2]appeared, which contain many results concerning locally compact rings. This book can be used in two w.ays. It contains all necessary elementary results from the theory of topological groups and rings. In order to read these parts of the book the reader needs to know only elementary facts from the theories of groups, rings, modules, topology. The book consists of two parts.
An introduction to differential geometry with applications to mechanics and physics. It covers topology and differential calculus in banach spaces; differentiable manifold and mapping submanifolds; tangent vector space; tangent bundle, vector field on manifold, Lie algebra structure, and one-parameter group of diffeomorphisms; exterior differential
This study covers comodules, rational modules and bicomodules; cosemisimple, semiperfect and co-Frobenius algebras; bialgebras and Hopf algebras; actions and coactions of Hopf algebras on algebras; finite dimensional Hopf algebras, with the Nicholas-Zoeller and Taft-Wilson theorems and character theory; and more.
"Analyzes algebras of concrete approximation methods detailing prerequisites, local principles, and lifting theorems. Covers fractality and Fredholmness. Explains the phenomena of the asymptotic splitting of the singular values, and more."
Containing data on number theory, encryption schemes, and cyclic codes, this highly successful textbook, proven by the authors in a popular two-quarter course, presents coding theory, construction, encoding, and decoding of specific code families in an "easy-to-use" manner appropriate for students with only a basic background in mathematics offering revised and updated material on the Berlekamp-Massey decoding algorithm and convolutional codes. Introducing the mathematics as it is needed and providing exercises with solutions, this edition includes an extensive section on cryptography, designed for an introductory course on the subject.
This text presents a comprehensive mathematical theory for elliptic, parabolic, and hyperbolic differential equations. It compares finite element and finite difference methods and illustrates applications of generalized difference methods to elastic bodies, electromagnetic fields, underground water pollution, and coupled sound-heat flows.