This volume is about "Structure". The search for "structure", always the pursuit of sciences within their specific areas and perspectives, is witnessing these days a dra matic revolution. The coexistence and interaction of so many structures (atoms, hu mans, cosmos and all that there is in between) would be unconceivable according to many experts, if there were not, behind it all, some gen eral organizational principle. s that (at least in some asymptotic way) make possible so many equilibria among species and natural objects, fan tastically tuned to an extremely high degree of precision. The evidence accumulates to an increasingly impressive degree; a concrete example comes from physics, whose constant aim always was and is that of searching for "ultimate laws", out of which everything should follow, from quarks to the cosmos. Our notions and philosophy have un dergone major revolutions, whenever the "unthinkable" has been changed by its wonderful endeavours into "fact". Well, it is just from physics that evidence comes: even if the "ultimate" could be reached, it would not in any way be a terminal point. When "complexity" comes into the game, entirely new notions have to be invented; they all have to do with "structure", though this time in a much wider sense than would have been understood a decade or so ago.
This book traces the evolution of theory of structures and strength of materials - the development of the geometrical thinking of the Renaissance to become the fundamental engineering science discipline rooted in classical mechanics. Starting with the strength experiments of Leonardo da Vinci and Galileo, the author examines the emergence of individual structural analysis methods and their formation into theory of structures in the 19th century. For the first time, a book of this kind outlines the development from classical theory of structures to the structural mechanics and computational mechanics of the 20th century. In doing so, the author has managed to bring alive the differences between the players with respect to their engineering and scientific profiles and personalities, and to create an understanding for the social context. Brief insights into common methods of analysis, backed up by historical details, help the reader gain an understanding of the history of structural mechanics from the standpoint of modern engineering practice. A total of 175 brief biographies of important personalities in civil and structural engineering as well as structural mechanics plus an extensive bibliography round off this work.
This textbook presents in a concise and self-contained way the advanced fundamental mathematical structures in quantum theory. It is based on lectures prepared for a 6 months course for MSc students. The reader is introduced to the beautiful interconnection between logic, lattice theory, general probability theory, and general spectral theory including the basic theory of von Neumann algebras and of the algebraic formulation, naturally arising in the study of the mathematical machinery of quantum theories. Some general results concerning hidden-variable interpretations of QM such as Gleason's and the Kochen-Specker theorems and the related notions of realism and non-contextuality are carefully discussed. This is done also in relation with the famous Bell (BCHSH) inequality concerning local causality. Written in a didactic style, this book includes many examples and solved exercises. The work is organized as follows. Chapter 1 reviews some elementary facts and properties of quantum systems. Chapter 2 and 3 present the main results of spectral analysis in complex Hilbert spaces. Chapter 4 introduces the point of view of the orthomodular lattices' theory. Quantum theory form this perspective turns out to the probability measure theory on the non-Boolean lattice of elementary observables and Gleason's theorem characterizes all these measures. Chapter 5 deals with some philosophical and interpretative aspects of quantum theory like hidden-variable formulations of QM. The Kochen-Specker theorem and its implications are analyzed also in relation BCHSH inequality, entanglement, realism, locality, and non-contextuality. Chapter 6 focuses on the algebra of observables also in the presence of superselection rules introducing the notion of von Neumann algebra. Chapter 7 offers the idea of (groups of) quantum symmetry, in particular, illustrated in terms of Wigner and Kadison theorems. Chapter 8 deals with the elementary ideas and results of the so called algebraic formulation of quantum theories in terms of both *-algebras and C*-algebras. This book should appeal to a dual readership: on one hand mathematicians that wish to acquire the tools that unlock the physical aspects of quantum theories; on the other physicists eager to solidify their understanding of the mathematical scaffolding of quantum theories.
Zehn Jahre nach der 1. Auflage in englischer Sprache legt der Autor sein Buch The History of the Theory of Structures in wesentlich erweiterter Form vor, nunmehr mit dem Untertitel Searching for Equilibrium. Mit dem vorliegenden Buch lädt der Verfasser seine Leser zur Suche nach dem Gleichgewicht von Tragwerken auf Zeitreisen ein. Die Zeitreisen setzen mit der Entstehung der Statik und Festigkeitslehre eines Leonardo und Galilei ein und erreichen ihren ersten Höhepunkt mit den baustatischen Theorien über den Balken, Erddruck und das Gewölbe von Coulomb am Ende des 18. Jahrhunderts. Im folgenden Jahrhundert formiert sich die Baustatik mit Navier, Culmann, Maxwell, Rankine, Mohr, Castigliano und Müller-Breslau zu einer technikwissenschaftlichen Grundlagendisziplin, die im 20. Jahrhundert in Gestalt der modernen Strukturmechanik bei der Herausbildung der konstruktiven Sprache des Stahl-, Stahlbeton-, Flugzeug-, Automobil- und des Schiffbaus eine tragende Rolle spielt. Dabei setzt der Autor den inhaltlichen Schwerpunkt auf die Formierung und Entwicklung moderner numerischer Ingenieurmethoden wie der Finite-Elemente-Methode und beschreibt ihre disziplinäre Integration in der Computational Mechanics. Kurze, durch historische Skizzen unterstützte Einblicke in gängige Berechnungsverfahren erleichtern den Zugang zur Geschichte der Strukturmechanik und Erddrucktheorie vom heutigen Stand der Ingenieurpraxis und stellen einen auch einen wichtigen Beitrag zur Ingenieurpädagogik dar. Dem Autor gelingt es, die Unterschiedlichkeit der Akteure hinsichtlich ihres technisch-wissenschaftlichen Profils und ihrer Persönlichkeit plastisch zu schildern und das Verständnis für den gesellschaftlichen Kontext zu erzeugen. So werden in 260 Kurzbiografien die subjektive Dimension der Baustatik und der Strukturmechanik von der frühen Neuzeit bis heute entfaltet. Dabei werden die wesentlichen Beiträge der Protagonisten der Baustatik besprochen und in die nachfolgende Bibliografie integriert. Berücksichtigt wurden nicht nur Bauingenieure und Architekten, sondern auch Mathematiker, Physiker, Maschinenbauer sowie Flugzeug- und Schiffbauer. Neben den bekannten Persönlichkeiten der Baustatik, wie Coulomb, Culmann, Maxwell, Mohr, Müller-Breslau, Navier, Rankine, Saint-Venant, Timoshenko und Westergaard, wurden u. a. auch G. Green, A. N. Krylov, G. Li, A. J. S. Pippard, W. Prager, H. A. Schade, A. W. Skempton, C. A. Truesdell, J. A. L. Waddell und H. Wagner berücksichtigt. Den Wegbereitern der Moderne in der Baustatik J. H. Argyris, R. W. Clough, Th. v. Kármán, M. J. Turner und O. C. Zienkiewicz wurden umfangreiche Biografien gewidmet. Eine ca. 4500 Titel umfassende Bibliografie rundet das Werk ab. Neue Inhalte der 2. Auflage sind: Erddrucktheorie, Traglastverfahren, historische Lehrbuchanalyse, Stahlbrückenbau, Leichtbau, Platten- und Schalentheorie, Greensche Funktion, Computerstatik, FEM, Computergestützte Graphostatik und Historische Technikwissenschaft. Gegenüber der 1., englischen Ausgabe wurde der Seitenumfang um 50 % auf nunmehr etwas über 1200 Druckseiten gesteigert. Das vorliegende Buch ist die erste zusammenfassende historische Gesamtdarstellung der Baustatik vom 16. Jahrhundert bis heute. Über die Reihe edition Bautechnikgeschichte: Mit erstaunlicher Dynamik hat sich die Bautechnikgeschichte in den vergangenen Jahrzehnten zu einer höchst lebendigen, international vernetzten und viel beachteten eigenständigen Disziplin entwickelt. Auch wenn die nationalen Forschungszugänge unterschiedliche Akzente setzen, eint sie doch das Bewusstsein, dass gerade die inhaltliche und methodische Vielfalt und das damit verbundene synthetische Potenzial die Stärke des neuen Forschungsfeldes ausmachen. Bautechnikgeschichte erschließt neue Formen des Verstehens von Bauen zwischen Ingenieurwesen und Architektur, zwischen Bau- und Kunst-, Technik- und Wissenschaftsgeschichte. Mit der edition Bautechnikgeschichte erhält die neue Disziplin erstmals einen Ort für die Publikation wichtiger Arbeiten auf angemessenem Niveau in hochwertiger Gestaltung. Die Bücher erscheinen in deutscher oder englischer Sprache. Beide Hauptrichtungen der Bautechnikgeschichte, der eher konstruktionsgeschichtlich und der eher theoriegeschichtlich geleitete Zugang, finden Berücksichtigung; das Spektrum der Bände reicht von Überblickswerken über Monographien zu Einzelaspekten oder -bauten bis hin zu Biographien bedeutender Ingenieurpersönlichkeiten. Ein international besetzter Wissenschaftlicher Beirat unterstützt die Herausgeber in der Umsetzung des Konzepts.
I feel elevated in presenting the New edition of this standard treatise.The favourable reception,which the previous edition and reprints of this book have enjoyed,is a matter of great satisfaction for me.I wish to express my sincere thanks to numerous professors and students for their valuable suggestions and recommending the patronise this standard treatise in the future also.
This volume provides a series of tutorials on mathematical structures which recently have gained prominence in physics, ranging from quantum foundations, via quantum information, to quantum gravity. These include the theory of monoidal categories and corresponding graphical calculi, Girard’s linear logic, Scott domains, lambda calculus and corresponding logics for typing, topos theory, and more general process structures. Most of these structures are very prominent in computer science; the chapters here are tailored towards an audience of physicists.
This Festschrift volume in honour of Prof. E R Caianiello contains invited papers of eminent scientists who have worked in the several areas to which Prof. Caianiello has given seminal contributions: quantum field theory, foundations of quantum mechanics and maximal acceleration (Vol. 1); neural nets, general systems theory and various topics of cybernetics (Vol. 2). The wide range of topics covered shows the fruitfulness of a higher unifying perspective on seemingly diverse subjects.
This revised and significantly expanded edition contains a rigorous examination of key concepts, new chapters and discussions within existing chapters, and added reference materials in the appendix, while retaining its classroom-tested approach to helping readers navigate through the deep ideas, vast collection of the fundamental methods of structural analysis. The authors show how to undertake the numerous analytical methods used in structural analysis by focusing on the principal concepts, detailed procedures and results, as well as taking into account the advantages and disadvantages of each method and sphere of their effective application. The end result is a guide to mastering the many intricacies of the range of methods of structural analysis. The book differentiates itself by focusing on extended analysis of beams, plane and spatial trusses, frames, arches, cables and combined structures; extensive application of influence lines for analysis of structures; simple and effective procedures for computation of deflections; introduction to plastic analysis, stability, and free and forced vibration analysis, as well as some special topics. Ten years ago, Professor Igor A. Karnovsky and Olga Lebed crafted a must-read book. Now fully updated, expanded, and titled Advanced Methods of Structural Analysis (Strength, Stability, Vibration), the book is ideal for instructors, civil and structural engineers, as well as researches and graduate and post graduate students with an interest in perfecting structural analysis.