Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention.The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all Threshold Graphs and Related Topics provides a valuable source of information for all those working in this field.
This book provides an extensive set of tools for applying fuzzy mathematics and graph theory to real-life problems. Balancing the basics and latest developments in fuzzy graph theory, this book starts with existing fundamental theories such as connectivity, isomorphism, products of fuzzy graphs, and different types of paths and arcs in fuzzy graphs to focus on advanced concepts such as planarity in fuzzy graphs, fuzzy competition graphs, fuzzy threshold graphs, fuzzy tolerance graphs, fuzzy trees, coloring in fuzzy graphs, bipolar fuzzy graphs, intuitionistic fuzzy graphs, m-polar fuzzy graphs, applications of fuzzy graphs, and more. Each chapter includes a number of key representative applications of the discussed concept. An authoritative, self-contained, and inspiring read on the theory and modern applications of fuzzy graphs, this book is of value to advanced undergraduate and graduate students of mathematics, engineering, and computer science, as well as researchers interested in new developments in fuzzy logic and applied mathematics.
Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
This book constitutes the thoroughly refereed post-proceedings of the 33rd International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2007, held in Dornburg, Germany, in June 2007. The 30 revised full papers presented together with one invited paper were carefully selected from 99 submissions. The papers feature original results on all aspects of graph-theoretic concepts in Computer Science, including structural graph theory, graph-based modeling, and graph-drawing.
Annotation This book constitutes the refereed proceedings of the 21st International Symposium on Algorithms and Computation, ISAAC 2010, held in Jeju, South Korea in December 2010.The 77 revised full papers presented were carefully reviewed and selected from 182 submissions for inclusion in the book. This volume contains topics such as approximation algorithm; complexity; data structure and algorithm; combinatorial optimization; graph algorithm; computational geometry; graph coloring; fixed parameter tractability; optimization; online algorithm; and scheduling.
The Handbook of Graph Theory is the most comprehensive single-source guide to graph theory ever published. Best-selling authors Jonathan Gross and Jay Yellen assembled an outstanding team of experts to contribute overviews of more than 50 of the most significant topics in graph theory-including those related to algorithmic and optimization approach
The 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2009) took place at Montpellier (France), June 24–26 2009. About 80 computer scientists from all over the world (Australia, Belgium, Canada, China, Czech Republic, France, Germany, Greece, Israel, Japan, Korea, The Netherlands, Norway, Spain, UK, USA) attended the conference. Since1975,ithastakenplace20timesinGermany,fourtimesinTheNeth- lands, twice in Austria, as well as once in Italy, Slovakia, Switzerland, the Czech Republic, France, Norway, and the UK. The conference aims at uniting theory and practice by demonstrating how graph-theoretic concepts can be applied to various areas in computer science, or by extracting new problems from appli- tions. The goal is to present recent research results and to identify and explore directions of future research. The conference is well-balanced with respect to established researchers and young scientists. There were 69 submissions. Each submission was reviewed by at least three, and on average four, Program Committee members. The Committee decided to accept 28 papers. Due to the competition and the limited schedule, some good papers could not be accepted. Theprogramalsoincludedexcellentinvitedtalks:onegivenbyDanielKràlon “AlgorithmsforClassesofGraphswithBoundedExpansion,” the otherbyDavid Eppsteinon“Graph-TheoreticSolutionstoComputationalGeometryProblems.” The proceedings contains two survey papers on these topics.