TIME SERIES FORECASTING USING NEURAL NETWORKS. EXAMPLES WITH MATLAB

TIME SERIES FORECASTING USING NEURAL NETWORKS. EXAMPLES WITH MATLAB

Author: Cesar Perez Lopez

Publisher: CESAR PEREZ

Published:

Total Pages: 283

ISBN-13:

DOWNLOAD EBOOK

MATLAB has the tool Deep Leraning Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, timeseries forecasting, and dynamic system modeling and control. Dynamic neural networks are good at timeseries prediction. You can use the Neural Net Time Series app to solve different kinds of time series problems It is generally best to start with the GUI, and then to use the GUI to automatically generate command line scripts. Before using either method, the first step is to define the problem by selecting a data set. Each GUI has access to many sample data sets that you can use to experiment with the toolbox. If you have a specific problem that you want to solve, you can load your own data into the workspace. With MATLAB is possibe to solve three different kinds of time series problems. In the first type of time series problem, you would like to predict future values of a time series y(t) from past values of that time series and past values of a second time series x(t). This form of prediction is called nonlinear autoregressive network with exogenous (external) input, or NARX. In the second type of time series problem, there is only one series involved. The future values of a time series y(t) are predicted only from past values of that series. This form of prediction is called nonlinear autoregressive, or NAR. The third time series problem is similar to the first type, in that two series are involved, an input series (predictors) x(t) and an output series (responses) y(t). Here you want to predict values of y(t) from previous values of x(t), but without knowledge of previous values of y(t). This book develops methods for time series forecasting using neural networks across MATLAB


Deep Learning for Time Series Forecasting

Deep Learning for Time Series Forecasting

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2018-08-30

Total Pages: 572

ISBN-13:

DOWNLOAD EBOOK

Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.


Big Data Analytics

Big Data Analytics

Author: C. Perez

Publisher: CESAR PEREZ

Published: 2020-05-31

Total Pages: 322

ISBN-13: 1716877423

DOWNLOAD EBOOK

Big data analytics is the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data.To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future. Among all these tools highlights MATLAB. MATLAB implements various toolboxes for working on big data analytics, such as Statistics Toolbox and Neural Network Toolbox (Deep Learning Toolbox for version 18) . This book develops the work capabilities of MATLAB with Neural Networks and Big Data.


DEEP LEARNING with MATLAB. NEURAL NETWORKS by EXAMPLES

DEEP LEARNING with MATLAB. NEURAL NETWORKS by EXAMPLES

Author: Cesar Perez Lopez

Publisher: CESAR PEREZ

Published: 2020-09-13

Total Pages: 154

ISBN-13: 1716584841

DOWNLOAD EBOOK

MATLAB has the tool Deep Learning Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets (Big data), you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox.


Big Data Analytics

Big Data Analytics

Author: C. Perez

Publisher: CESAR PEREZ

Published: 2020-05-31

Total Pages: 389

ISBN-13: 1716876869

DOWNLOAD EBOOK

Big Data Analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox from version 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control.The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Big Data tools (Parallel Computing Toolbox). Unsupervised learning algorithms, including self-organizing maps and competitive layers-Apps for data-fitting, pattern recognition, and clustering-Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance. his book develops cluster analysis and pattern recognition


Computational Intelligence in Time Series Forecasting

Computational Intelligence in Time Series Forecasting

Author: Ajoy K. Palit

Publisher: Springer Science & Business Media

Published: 2006-01-04

Total Pages: 382

ISBN-13: 1846281849

DOWNLOAD EBOOK

Foresight in an engineering business can make the difference between success and failure, and can be vital to the effective control of industrial systems. The authors of this book harness the power of intelligent technologies individually and in combination.


Machine and Deep Learning Using MATLAB

Machine and Deep Learning Using MATLAB

Author: Kamal I. M. Al-Malah

Publisher: John Wiley & Sons

Published: 2023-10-12

Total Pages: 596

ISBN-13: 139420910X

DOWNLOAD EBOOK

MACHINE AND DEEP LEARNING In-depth resource covering machine and deep learning methods using MATLAB tools and algorithms, providing insights and algorithmic decision-making processes Machine and Deep Learning Using MATLAB introduces early career professionals to the power of MATLAB to explore machine and deep learning applications by explaining the relevant MATLAB tool or app and how it is used for a given method or a collection of methods. Its properties, in terms of input and output arguments, are explained, the limitations or applicability is indicated via an accompanied text or a table, and a complete running example is shown with all needed MATLAB command prompt code. The text also presents the results, in the form of figures or tables, in parallel with the given MATLAB code, and the MATLAB written code can be later used as a template for trying to solve new cases or datasets. Throughout, the text features worked examples in each chapter for self-study with an accompanying website providing solutions and coding samples. Highlighted notes draw the attention of the user to critical points or issues. Readers will also find information on: Numeric data acquisition and analysis in the form of applying computational algorithms to predict the numeric data patterns (clustering or unsupervised learning) Relationships between predictors and response variable (supervised), categorically sub-divided into classification (discrete response) and regression (continuous response) Image acquisition and analysis in the form of applying one of neural networks, and estimating net accuracy, net loss, and/or RMSE for the successive training, validation, and testing steps Retraining and creation for image labeling, object identification, regression classification, and text recognition Machine and Deep Learning Using MATLAB is a useful and highly comprehensive resource on the subject for professionals, advanced students, and researchers who have some familiarity with MATLAB and are situated in engineering and scientific fields, who wish to gain mastery over the software and its numerous applications.


Recent Advances in Computer Science and Information Engineering

Recent Advances in Computer Science and Information Engineering

Author: Zhihong Qian

Publisher: Springer Science & Business Media

Published: 2012-01-25

Total Pages: 779

ISBN-13: 364225781X

DOWNLOAD EBOOK

CSIE 2011 is an international scientific Congress for distinguished scholars engaged in scientific, engineering and technological research, dedicated to build a platform for exploring and discussing the future of Computer Science and Information Engineering with existing and potential application scenarios. The congress has been held twice, in Los Angeles, USA for the first and in Changchun, China for the second time, each of which attracted a large number of researchers from all over the world. The congress turns out to develop a spirit of cooperation that leads to new friendship for addressing a wide variety of ongoing problems in this vibrant area of technology and fostering more collaboration over the world. The congress, CSIE 2011, received 2483 full paper and abstract submissions from 27 countries and regions over the world. Through a rigorous peer review process, all submissions were refereed based on their quality of content, level of innovation, significance, originality and legibility. 688 papers have been accepted for the international congress proceedings ultimately.


Data Science Concepts and Techniques with Applications

Data Science Concepts and Techniques with Applications

Author: Usman Qamar

Publisher: Springer Nature

Published: 2023-04-02

Total Pages: 492

ISBN-13: 3031174429

DOWNLOAD EBOOK

This textbook comprehensively covers both fundamental and advanced topics related to data science. Data science is an umbrella term that encompasses data analytics, data mining, machine learning, and several other related disciplines. The chapters of this book are organized into three parts: The first part (chapters 1 to 3) is a general introduction to data science. Starting from the basic concepts, the book will highlight the types of data, its use, its importance and issues that are normally faced in data analytics, followed by presentation of a wide range of applications and widely used techniques in data science. The second part, which has been updated and considerably extended compared to the first edition, is devoted to various techniques and tools applied in data science. Its chapters 4 to 10 detail data pre-processing, classification, clustering, text mining, deep learning, frequent pattern mining, and regression analysis. Eventually, the third part (chapters 11 and 12) present a brief introduction to Python and R, the two main data science programming languages, and shows in a completely new chapter practical data science in the WEKA (Waikato Environment for Knowledge Analysis), an open-source tool for performing different machine learning and data mining tasks. An appendix explaining the basic mathematical concepts of data science completes the book. This textbook is suitable for advanced undergraduate and graduate students as well as for industrial practitioners who carry out research in data science. They both will not only benefit from the comprehensive presentation of important topics, but also from the many application examples and the comprehensive list of further readings, which point to additional publications providing more in-depth research results or provide sources for a more detailed description of related topics. "This book delivers a systematic, carefully thoughtful material on Data Science." from the Foreword by Witold Pedrycz, U Alberta, Canada.


MATLAB Deep Learning

MATLAB Deep Learning

Author: Phil Kim

Publisher: Apress

Published: 2017-06-15

Total Pages: 162

ISBN-13: 1484228456

DOWNLOAD EBOOK

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.