Radiative Heat Transfer

Radiative Heat Transfer

Author: Michael F. Modest

Publisher: Academic Press

Published: 2003-03-07

Total Pages: 850

ISBN-13: 9780125031639

DOWNLOAD EBOOK

The basic physics of radiative heat - how surfaces emit, reflect, and absorb waves, and how that heat is distributed.


Thermal Radiation Heat Transfer, Fourth Edition

Thermal Radiation Heat Transfer, Fourth Edition

Author: Robert Siegel

Publisher: CRC Press

Published: 2001-12-07

Total Pages: 898

ISBN-13: 9781560328391

DOWNLOAD EBOOK

This extensively revised 4th edition provides an up-to-date, comprehensive single source of information on the important subjects in engineering radiative heat transfer. It presents the subject in a progressive manner that is excellent for classroom use or self-study, and also provides an annotated reference to literature and research in the field. The foundations and methods for treating radiative heat transfer are developed in detail, and the methods are demonstrated and clarified by solving example problems. The examples are especially helpful for self-study. The treatment of spectral band properties of gases has been made current and the methods are described in detail and illustrated with examples. The combination of radiation with conduction and/or convection has been given more emphasis nad has been merged with results for radiation alone that serve as a limiting case; this increases practicality for energy transfer in translucent solids and fluids. A comprehensive catalog of configuration factors on the CD that is included with each book provides over 290 factors in algebraic or graphical form. Homework problems with answers are given in each chapter, and a detailed and carefully worked solution manual is available for instructors.


Ultra-High Temperature Materials III

Ultra-High Temperature Materials III

Author: Igor L. Shabalin

Publisher: Springer Nature

Published: 2020-07-07

Total Pages: 807

ISBN-13: 9402420398

DOWNLOAD EBOOK

This exhaustive work in several volumes and over 2500 pages provides a thorough treatment of ultra-high temperature materials (with melting points around or over 2500 °C). The first volume focuses on carbon (graphene/graphite) and refractory metals (W, Re, Os, Ta, Mo, Nb and Ir), whilst the second and third are dedicated to refractory transition metal 4-5 groups carbides. Topics included are physical (structural, thermal, electro-magnetic, optical, mechanical, nuclear) and chemical (more than 3000 binary, ternary and multi-component systems, including those used for materials design, data on solid-state diffusion, wettability, interaction with various elements and compounds in solid and liquid states, gases and chemicals in aqueous solutions) properties of these materials. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The readers/users are provided with the full qualitative and quantitative assessment, which is based on the latest updates in the field of fundamental physics and chemistry, nanotechnology, materials science, design and engineering.


Introduction to Heat Transfer

Introduction to Heat Transfer

Author: Theodore L. Bergman

Publisher: John Wiley & Sons

Published: 2011-06-13

Total Pages: 2069

ISBN-13: 0470501960

DOWNLOAD EBOOK

Completely updated, the sixth edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.


Fundamentals of Heat and Mass Transfer

Fundamentals of Heat and Mass Transfer

Author: T. L. Bergman

Publisher: John Wiley & Sons

Published: 2011-04-12

Total Pages: 2249

ISBN-13: 0470501979

DOWNLOAD EBOOK

Fundamentals of Heat and Mass Transfer, 7th Edition is the gold standard of heat transfer pedagogy for more than 30 years, with a commitment to continuous improvement by four authors having more than 150 years of combined experience in heat transfer education, research and practice. Using a rigorous and systematic problem-solving methodology pioneered by this text, it is abundantly filled with examples and problems that reveal the richness and beauty of the discipline. This edition maintains its foundation in the four central learning objectives for students and also makes heat and mass transfer more approachable with an additional emphasis on the fundamental concepts, as well as highlighting the relevance of those ideas with exciting applications to the most critical issues of today and the coming decades: energy and the environment. An updated version of Interactive Heat Transfer (IHT) software makes it even easier to efficiently and accurately solve problems.


Ultra-High Temperature Materials II

Ultra-High Temperature Materials II

Author: Igor L. Shabalin

Publisher: Springer

Published: 2019-04-24

Total Pages: 764

ISBN-13: 9402413022

DOWNLOAD EBOOK

This exhaustive work in three volumes and over 1300 pages provides a thorough treatment of ultra-high temperature materials with melting points over 2500 °C. The first volume focuses on Carbon and Refractory Metals, whilst the second and third are dedicated solely to Refractory compounds and the third to Refractory Alloys and Composites respectively. Topics included are physical (crystallographic, thermodynamic, thermo physical, electrical, optical, physico-mechanical, nuclear) and chemical (solid-state diffusion, interaction with chemical elements and compounds, interaction with gases, vapours and aqueous solutions) properties of the individual physico-chemical phases of carbon (graphite/graphene), refractory metals (W, Re, Os, Ta, Mo, Nb, Ir) and compounds (oxides, nitrides, carbides, borides, silicides) with melting points in this range. It will be of interest to researchers, engineers, postgraduate, graduate and undergraduate students alike. The reader is provided with the full qualitative and quantitative assessment for the materials, which could be applied in various engineering devices and environmental conditions at ultra-high temperatures, on the basis of the latest updates in the field of physics, chemistry, materials science and engineering.


Fundamentals of Heat and Mass Transfer

Fundamentals of Heat and Mass Transfer

Author: Theodore L. Bergman

Publisher: John Wiley & Sons

Published: 2020-07-08

Total Pages: 994

ISBN-13: 1119722489

DOWNLOAD EBOOK

With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective. Fundamentals of Heat and Mass Transfer 8th Edition has been the gold standard of heat transfer pedagogy for many decades, with a commitment to continuous improvement by four authors’ with more than 150 years of combined experience in heat transfer education, research and practice. Applying the rigorous and systematic problem-solving methodology that this text pioneered an abundance of examples and problems reveal the richness and beauty of the discipline. This edition makes heat and mass transfer more approachable by giving additional emphasis to fundamental concepts, while highlighting the relevance of two of today’s most critical issues: energy and the environment.


Fundamentals of Crystal Growth I

Fundamentals of Crystal Growth I

Author: Franz E. Rosenberger

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 544

ISBN-13: 3642812759

DOWNLOAD EBOOK

The intrinsic properties of a solid, i. e. , the properties that result from its specific structure, can be largely modified by crystallographic and chem ical defects. The formation of these defects is governed by the heat and mass transfer conditions which prevail on and near a crystal-nutrient in terface during crystallization. Hence, both the growth of highly perfect crystals and the preparation of samples having predetermined defect-induced (extrinsic) properties require a thorough understanding of the reaction and transport mechanisms that govern crystallization from vapors, solutions and melts. Crystal growth, as a science, is therefore mostly concerned with the chemistry and physics of heat and mass transport in these fluid-solid phase transitions. Solid-solid transitions are, at this time, not widely employed for high quality single-crystal production. Transport concepts are largely built upon equilibrium considerations, i. e. , on thermodynamic and phase equilibrium concepts. Hence to supply a "workable" foundation for the succeeding discussions, this text begins in Chapter 2 with a concise treatment of thermodynamics which emphasizes applications to mate rials preparation. After working through this chapter, the reader should feel at ease with often (particularly among physicists) unfamiliar entities such as chemical potentials, fugacities, activities. etc. Special sections on ther mochemical calculations (and their pitfalls) and compilations of thermochemi cal data conclude the second chapter. Crystal growth can be called. in a wide sense, the science and technology of controlling phase transitions that lead to (single crystalline) solids.