Thermo-Dynamics of Plates and Shells

Thermo-Dynamics of Plates and Shells

Author: Jan Awrejcewicz

Publisher: Springer Science & Business Media

Published: 2007-02-15

Total Pages: 785

ISBN-13: 3540342621

DOWNLOAD EBOOK

This monograph is devoted to nonlinear dynamics of thin plates and shells with thermosensitive excitation. Because of the variety of sizes and types of mathematical models in current use, there is no prospect of solving them analytically. However, the book emphasizes a rigorous mathematical treatment of the obtained differential equations, since it helps efficiently in further developing of various suitable numerical algorithms to solve the stated problems.


Plates and Shells

Plates and Shells

Author: Ansel C. Ugural

Publisher: CRC Press

Published: 2017-10-02

Total Pages: 592

ISBN-13: 135159866X

DOWNLOAD EBOOK

Noted for its practical, accessible approach to senior and graduate-level engineering mechanics, Plates and Shells: Theory and Analysis is a long-time bestselling text on the subjects of elasticity and stress analysis. Many new examples and applications are included to review and support key foundational concepts. Advanced methods are discussed and analyzed, accompanied by illustrations. Problems are carefully arranged from the basic to the more challenging level. Computer/numerical approaches (Finite Difference, Finite Element, MATLAB) are introduced, and MATLAB code for selected illustrative problems and a case study is included.


Theories of Plates and Shells

Theories of Plates and Shells

Author: Reinhold Kienzler

Publisher: Springer Science & Business Media

Published: 2013-06-01

Total Pages: 258

ISBN-13: 3540399054

DOWNLOAD EBOOK

Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.


Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials

Nonlinear Mechanics of Shells and Plates in Composite, Soft and Biological Materials

Author: Marco Amabili

Publisher: Cambridge University Press

Published: 2018-11

Total Pages: 585

ISBN-13: 1107129222

DOWNLOAD EBOOK

This book guides the reader into the modelling of shell structures in applications where advanced composite materials or complex biological materials must be described with great accuracy. A valuable resource for researchers, professionals and graduate students, it presents a variety of practical concepts, diagrams and numerical results.


Classical Continuum Mechanics

Classical Continuum Mechanics

Author: Karan S. Surana

Publisher: CRC Press

Published: 2022-01-24

Total Pages: 829

ISBN-13: 1000512347

DOWNLOAD EBOOK

This book provides physical and mathematical foundation as well as complete derivation of the mathematical descriptions and constitutive theories for deformation of solid and fluent continua, both compressible and incompressible with clear distinction between Lagrangian and Eulerian descriptions as well as co- and contra-variant bases. Definitions of co- and contra-variant tensors and tensor calculus are introduced using curvilinear frame and then specialized for Cartesian frame. Both Galilean and non-Galilean coordinate transformations are presented and used in establishing objective tensors and objective rates. Convected time derivatives are derived using the conventional approach as well as non-Galilean transformation and their significance is illustrated in finite deformation of solid continua as well as in the case of fluent continua. Constitutive theories are derived using entropy inequality and representation theorem. Decomposition of total deformation for solid and fluent continua into volumetric and distortional deformation is essential in providing a sound, general and rigorous framework for deriving constitutive theories. Energy methods and the principle of virtual work are demonstrated to be a small isolated subset of the calculus of variations. Differential form of the mathematical models and calculus of variations preclude energy methods and the principle of virtual work. The material in this book is developed from fundamental concepts at very basic level with gradual progression to advanced topics. This book contains core scientific knowledge associated with mathematical concepts and theories for deforming continuous matter to prepare graduate students for fundamental and basic research in engineering and sciences. The book presents detailed and consistent derivations with clarity and is ideal for self-study.


Analysis of Shells, Plates, and Beams

Analysis of Shells, Plates, and Beams

Author: Holm Altenbach

Publisher: Springer Nature

Published: 2020-06-03

Total Pages: 504

ISBN-13: 3030474917

DOWNLOAD EBOOK

This book commemorates the 75th birthday of Prof. George Jaiani – Georgia’s leading expert on shell theory. He is also well known outside Georgia for his individual approach to shell theory research and as an organizer of meetings, conferences and schools in the field. The collection of papers presented includes articles by scientists from various countries discussing the state of the art and new trends in the theory of shells, plates, and beams. Chapter 20 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Buckling and Postbuckling of Beams, Plates, and Shells

Buckling and Postbuckling of Beams, Plates, and Shells

Author: M. Reza Eslami

Publisher: Springer

Published: 2017-11-03

Total Pages: 603

ISBN-13: 3319623680

DOWNLOAD EBOOK

This book contains eight chapters treating the stability of all major areas of the flexural theory. It covers the stability of structures under mechanical and thermal loads and all areas of structural, loading and material types. The structural element may be assumed to be made of a homogeneous/isotropic material, or of a functionally graded material. Structures may experience the bifurcation phenomenon, or they may follow the postbuckling path. This volume explains all these aspects in detail. The book is self-contained and the necessary mathematical concepts and numerical methods are presented in such a way that the reader may easily follow the topics based on these basic tools. It is intended for people working or interested in areas of structural stability under mechanical and/or thermal loads. Some basic knowledge in classical mechanics and theory of elasticity is required.


Mechanics of Laminated Composite Plates and Shells

Mechanics of Laminated Composite Plates and Shells

Author: J. N. Reddy

Publisher: CRC Press

Published: 2003-11-24

Total Pages: 864

ISBN-13: 9780203502808

DOWNLOAD EBOOK

The second edition of this popular text provides complete, detailed coverage of the various theories, analytical solutions, and finite element models of laminated composite plates and shells. The book reflects advances in materials modeling in general and composite materials and structures in particular. It includes a chapter dedicated to the theory and analysis of laminated shells, discussions on smart structures and functionally graded materials, exercises and examples, and chapters that were reorganized from the first edition to improve the clarity of the presentation.


Thin Plates and Shells

Thin Plates and Shells

Author: Eduard Ventsel

Publisher: CRC Press

Published: 2001-08-24

Total Pages: 688

ISBN-13: 9780203908723

DOWNLOAD EBOOK

Presenting recent principles of thin plate and shell theories, this book emphasizes novel analytical and numerical methods for solving linear and nonlinear plate and shell dilemmas, new theories for the design and analysis of thin plate-shell structures, and real-world numerical solutions, mechanics, and plate and shell models for engineering appli


Design for Thermal Stresses

Design for Thermal Stresses

Author: Randall F. Barron

Publisher: John Wiley & Sons

Published: 2011-09-07

Total Pages: 464

ISBN-13: 1118094530

DOWNLOAD EBOOK

The tools engineers need for effective thermal stress design Thermal stress concerns arise in many engineering situations, from aerospace structures to nuclear fuel rods to concrete highway slabs on a hot summer day. Having the tools to understand and alleviate these potential stresses is key for engineers in effectively executing a wide range of modern design tasks. Design for Thermal Stresses provides an accessible and balanced resource geared towards real-world applications. Presenting both the analysis and synthesis needed for accurate design, the book emphasizes key principles, techniques, and approaches for solving thermal stress problems. Moving from basic to advanced topics, chapters cover: Bars, beams, and trusses from a "strength of materials" perspective Plates, shells, and thick-walled vessels from a "theory of elasticity" perspective Thermal buckling in columns, beams, plates, and shells Written for students and working engineers, this book features numerous sample problems demonstrating concepts at work. In addition, appendices include important SI units, relevant material properties, and mathematical functions such as Bessel and Kelvin functions, as well as characteristics of matrices and determinants required for designing plates and shells. Suitable as either a working reference or an upper-level academic text, Design for Thermal Stresses gives students and professional engineers the information they need to meet today's thermal stress design challenges.