Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer

Author: Zhuomin M. Zhang

Publisher: Springer Nature

Published: 2020-06-23

Total Pages: 780

ISBN-13: 3030450392

DOWNLOAD EBOOK

This substantially updated and augmented second edition adds over 200 pages of text covering and an array of newer developments in nanoscale thermal transport. In Nano/Microscale Heat Transfer, 2nd edition, Dr. Zhang expands his classroom-proven text to incorporate thermal conductivity spectroscopy, time-domain and frequency-domain thermoreflectance techniques, quantum size effect on specific heat, coherent phonon, minimum thermal conductivity, interface thermal conductance, thermal interface materials, 2D sheet materials and their unique thermal properties, soft materials, first-principles simulation, hyperbolic metamaterials, magnetic polaritons, and new near-field radiation experiments and numerical simulations. Informed by over 12 years use, the author’s research experience, and feedback from teaching faculty, the book has been reorganized in many sections and enriched with more examples and homework problems. Solutions for selected problems are also available to qualified faculty via a password-protected website.• Substantially updates and augments the widely adopted original edition, adding over 200 pages and many new illustrations;• Incorporates student and faculty feedback from a decade of classroom use;• Elucidates concepts explained with many examples and illustrations;• Supports student application of theory with 300 homework problems;• Maximizes reader understanding of micro/nanoscale thermophysical properties and processes and how to apply them to thermal science and engineering;• Features MATLAB codes for working with size and temperature effects on thermal conductivity, specific heat of nanostructures, thin-film optics, RCWA, and near-field radiation.


Nanoscale Energy Transport

Nanoscale Energy Transport

Author: LIAO

Publisher: IOP Publishing Limited

Published: 2020-03-20

Total Pages: 440

ISBN-13: 9780750317368

DOWNLOAD EBOOK

This book brings together leading names in the field of nanoscale energy transport to provide a comprehensive and insightful review of this developing topic. The text covers new developments in the scientific basis and the practical relevance of nanoscale energy transport, highlighting the emerging effects at the nanoscale that qualitatively differ from those at the macroscopic scale. Throughout the book, microscopic energy carriers are discussed, including photons, electrons and magnons. State-of-the-art computational and experimental nanoscale energy transport methods are reviewed, and a broad range of materials system topics are considered, from interfaces and molecular junctions to nanostructured bulk materials. Nanoscale Energy Transport is a valuable reference for researchers in physics, materials, mechanical and electrical engineering, and it provides an excellent resource for graduate students.


Nanoscale Energy Transport and Conversion

Nanoscale Energy Transport and Conversion

Author: Gang Chen

Publisher: Oxford University Press

Published: 2005-03-03

Total Pages: 570

ISBN-13: 9780199774685

DOWNLOAD EBOOK

This is a graduate level textbook in nanoscale heat transfer and energy conversion that can also be used as a reference for researchers in the developing field of nanoengineering. It provides a comprehensive overview of microscale heat transfer, focusing on thermal energy storage and transport. Chen broadens the readership by incorporating results from related disciplines, from the point of view of thermal energy storage and transport, and presents related topics on the transport of electrons, phonons, photons, and molecules. This book is part of the MIT-Pappalardo Series in Mechanical Engineering.


Heat Transport in Micro- and Nanoscale Thin Films

Heat Transport in Micro- and Nanoscale Thin Films

Author: Bekir Sami Yilbas

Publisher: Elsevier

Published: 2017-08-23

Total Pages: 437

ISBN-13: 032342998X

DOWNLOAD EBOOK

Heat Transport in Micro- and Nanoscale Thin Films presents aspects and applications of the principle methods of heat transport in relation to nanoscale films. Small-scale parts and thin films are widely used in the electronics industry. However, the drastic change in the thermal conductivity with reducing device size and film thickness modifies the energy transport by heat-carrying phonons in the film. Energy transfer in small-sized devices and thin films deviate from the classical diffusion to radiative transport. This book deals with micro/nano scale heat transfer in small scale devices and the thin films, including interface properties of cross-plane transport. The book fills the gap between applications of the physical fundamentals and energy transport at the micro- and nano scale, which will be valuable for academics, researchers and students in the fields of materials science and energy transport. - Offers a specialist focus on nanoscale thin films, allowing the reader to create more efficient heat transfer systems - Includes in-depth coverage of the formulation of transient energy transport for short durations of heating, which is valuable those working in electronics - Focuses on applications and real-life case studies to clearly illustrate how the theories explained in the book can be used in industry


Thermal Nanosystems and Nanomaterials

Thermal Nanosystems and Nanomaterials

Author: Sebastian Volz

Publisher: Springer Science & Business Media

Published: 2009-12-24

Total Pages: 597

ISBN-13: 3642042589

DOWNLOAD EBOOK

Heat transfer laws for conduction, radiation and convection change when the dimensions of the systems in question shrink. The altered behaviours can be used efficiently in energy conversion, respectively bio- and high-performance materials to control microelectronic devices. To understand and model those thermal mechanisms, specific metrologies have to be established. This book provides an overview of actual devices and materials involving micro-nanoscale heat transfer mechanisms. These are clearly explained and exemplified by a large spectrum of relevant physical models, while the most advanced nanoscale thermal metrologies are presented.


Nano/Microscale Heat Transfer

Nano/Microscale Heat Transfer

Author: Zhuomin Zhang

Publisher: McGraw Hill Professional

Published: 2007-04-20

Total Pages: 512

ISBN-13:

DOWNLOAD EBOOK

A THOROUGH EXPLANATION OF THE METHODOLOGIES USED FOR SOLVING HEAT TRANSFER PROBLEMS IN MICRO- AND NANOSYSTEMS. Written by one of the field's pioneers, this highly practical, focused resource integrates the existing body of traditional knowledge with the most recent breakthroughs to offer the reader a solid foundation as well as working technical skills. THE INFORMATION NEEDED TO ACCOUNT FOR THE SIZE EFFECT WHEN DESIGNING AND ANALYZING SYSTEMS AT THE NANOMETER SCALE, WITH COVERAGE OF Statistical Thermodynamics, Quantum Mechanics, Thermal Properties of Molecules, Kinetic Theory, and Micro/Nanofluidics Thermal Transport in Solid Micro/Nanostructures, Electron and Phonon Scattering, Size Effects, Quantum Conductance, Electronic Band Theory, Tunneling, Nonequilibrium Heat Conduction, and Analysis of Solid State Devices Such As Thermoelectric Refrigeration and Optoelectronics Nanoscale Thermal Radiation and Radiative Properties of Nanomaterials, Radiation Temperature and Entropy, Surface Electromagnetic Waves, and Near-Field Radiation for Energy Conversion Devices IN THE NANOWORLD WHERE THE OLD AXIOMS OF THERMAL ANALYSIS MAY NOT APPLY, NANO/MICROSCALE HEAT TRANSFER IS AN ESSENTIAL RESEARCH AND LEARNING SOURCE. Inside: • Statistical Thermodynamics and Kinetic Theory • Thermal Properties of Solids • Thermal Transport in Solids Micro/Nanostructures • Micro/Nanoscale Thermal Radiation • Radiative Properties of Nanomaterials


Nano and Bio Heat Transfer and Fluid Flow

Nano and Bio Heat Transfer and Fluid Flow

Author: Majid Ghassemi

Publisher: Academic Press

Published: 2017-03-15

Total Pages: 162

ISBN-13: 0128038527

DOWNLOAD EBOOK

Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. - Discusses nanoparticle applications in drug delivery - Covers the engineering fundamentals of bio heat transfer and fluid flow - Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems


Microscale and Nanoscale Heat Transfer

Microscale and Nanoscale Heat Transfer

Author: C.B. Sobhan

Publisher: CRC Press

Published: 2008-06-12

Total Pages: 434

ISBN-13: 1420007114

DOWNLOAD EBOOK

Through analyses, experimental results, and worked-out numerical examples, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications explores the methods and observations of thermophysical phenomena in size-affected domains. Compiling the most relevant findings from the literature, along with results from their own re


Principles of Heat Transfer in Porous Media

Principles of Heat Transfer in Porous Media

Author: M. Kaviany

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 636

ISBN-13: 1468404121

DOWNLOAD EBOOK

Although the empirical treatment of fluid flow and heat transfer in porous media is over a century old, only in the last three decades has the transport in these heterogeneous systems been addressed in detail. So far, single-phase flows in porous media have been treated or at least formulated satisfactorily, while the subject of two-phase flow and the related heat-transfer in porous media is still in its infancy. This book identifies the principles of transport in porous media and compares the avalaible predictions based on theoretical treatments of various transport mechanisms with the existing experimental results. The theoretical treatment is based on the volume-averaging of the momentum and energy equations with the closure conditions necessary for obtaining solutions. While emphasizing a basic understanding of heat transfer in porous media, this book does not ignore the need for predictive tools; whenever a rigorous theoretical treatment of a phenomena is not avaliable, semi-empirical and empirical treatments are given.