Theory of Structural Transformations in Solids

Theory of Structural Transformations in Solids

Author: Armen G. Khachaturyan

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 594

ISBN-13: 0486462803

DOWNLOAD EBOOK

Written by a world-renowned expert, this text addresses both theoretical and practical aspects of phase transformation in alloys. It examines change in atomic structure and morphology caused by ordering, strain-induced ordering, strain-controlled decomposition, and strain-induced coarsening, applying solid-state theoretical concepts to structure problems. 1983 edition.


Theory of Structural Transformations in Solids

Theory of Structural Transformations in Solids

Author: Armen G. Khachaturyan

Publisher: Courier Corporation

Published: 2013-12-01

Total Pages: 594

ISBN-13: 0486783448

DOWNLOAD EBOOK

Addressing both theoretical and practical aspects of phase transformation in alloys, this text formulates significant aspects of the quantitative metallurgy of phase transformations. It further applies solid-state theoretical concepts to structure problems arising in experimental studies of real alloys. Author Armen G. Khachaturyan, Professor of Materials Science at Rutgers University, ranks among the foremost authorities on this subject. In this volume, he takes a creative approach to examining change in atomic structure and morphology caused by ordering, strain-induced ordering, strain-controlled decomposition, and strain-induced coarsening. Unifying relationships among various fields of solid-state physics are stressed throughout the book. Topics include structure changes in two-phase alloys controlled by the phase transformation elastic strain, in addition to important results in the area of microscopic elasticity regarding problems of elastic interaction in impurity atoms, and strain-induced ordering and decomposition in interstitial solutions. An excellent text for advanced undergraduate and graduate courses in physical metallurgy, solid state physics, solid state chemistry, and materials science, this volume is also a valuable reference for professionals conducting research in phase transformations


Phase Transitions in Materials

Phase Transitions in Materials

Author: Brent Fultz

Publisher: Cambridge University Press

Published: 2014-08-14

Total Pages: 589

ISBN-13: 1107067243

DOWNLOAD EBOOK

A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.


Nonlinear Wave Dynamics of Materials and Structures

Nonlinear Wave Dynamics of Materials and Structures

Author: Holm Altenbach

Publisher: Springer Nature

Published: 2020-04-22

Total Pages: 473

ISBN-13: 3030387089

DOWNLOAD EBOOK

This book marks the 60th birthday of Prof. Vladimir Erofeev – a well-known specialist in the field of wave processes in solids, fluids, and structures. Featuring a collection of papers related to Prof. Erofeev’s contributions in the field, it presents articles on the current problems concerning the theory of nonlinear wave processes in generalized continua and structures. It also discusses a number of applications as well as various discrete and continuous dynamic models of structures and media and problems of nonlinear acoustic diagnostics.


Mechanics Of Solids And Structures (2nd Edition)

Mechanics Of Solids And Structures (2nd Edition)

Author: David W A Rees

Publisher: World Scientific Publishing Company

Published: 2016-08-04

Total Pages: 848

ISBN-13: 1783264101

DOWNLOAD EBOOK

The fifteen chapters of this book are arranged in a logical progression. The text begins with the more fundamental material on stress and strain transformations with elasticity theory for plane and axially symmetric bodies, followed by a full treatment of the theories of bending and torsion. Coverage of moment distribution, shear flow, struts and energy methods precede a chapter on finite elements. Thereafter, the book presents yield and strength criteria, plasticity, collapse, creep, visco-elasticity, fatigue and fracture mechanics. Appended is material on the properties of areas, matrices and stress concentrations. Each topic is illustrated by worked examples and supported by numerous exercises drawn from the author's teaching experience and professional institution examinations (CEI).This edition includes new material and an extended exercise section for each of the fifteen chapters, as well as three appendices. The broad text ensures its suitability for undergraduate and postgraduate courses in which the mechanics of solids and structures form a part including: mechanical, aeronautical, civil, design and materials engineering.


Nanostructures in Ferroelectric Films for Energy Applications

Nanostructures in Ferroelectric Films for Energy Applications

Author: Jun Ouyang

Publisher: Elsevier

Published: 2019-06-06

Total Pages: 388

ISBN-13: 0128138572

DOWNLOAD EBOOK

Nanostructures in Ferroelectric Films for Energy Applications: Grains, Domains, Interfaces and Engineering Methods presents methods of engineering nanostructures in ferroelectric films to improve their performance in energy harvesting and conversion and storage. Ferroelectric films, which have broad applications, including the emerging energy technology, usually consist of nanoscale inhomogeneities. For polycrystalline films, the size and distribution of nano-grains determines the macroscopic properties, especially the field-induced polarization response. For epitaxial films, the energy of internal long-range electric and elastic fields during their growth are minimized by formation of self-assembled nano-domains. This book is an accessible reference for both instructors in academia and R&D professionals. - Provides the necessary components for the systematic study of the structure-property relationship in ferroelectric thin film materials using case studies in energy applications - Written by leading experts in the research areas of piezoelectrics, electrocalorics, ferroelectric dielectrics (especially in capacitive energy storage), ferroelectric domains, and ferroelectric-Si technology - Includes a well balanced mix of theoretical design and simulation, materials processing and integration, and dedicated characterization methods of the involved nanostructures


Multiscale Materials Modelling

Multiscale Materials Modelling

Author: Z. X. Guo

Publisher: Elsevier

Published: 2007-05-31

Total Pages: 307

ISBN-13: 184569337X

DOWNLOAD EBOOK

Multiscale materials modelling offers an integrated approach to modelling material behaviour across a range of scales from the electronic, atomic and microstructural up to the component level. As a result, it provides valuable new insights into complex structures and their properties, opening the way to develop new, multi-functional materials together with improved process and product designs. Multiscale materials modelling summarises some of the key techniques and their applications.The various chapters cover the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling. The book covers such themes as dislocation behaviour and plasticity as well as the modelling of structural materials such as metals, polymers and ceramics. With its distinguished editor and international team of contributors, Multiscale materials modelling is a valuable reference for both the modelling community and those in industry wanting to know more about how multiscale materials modelling can help optimise product and process design. - Reviews the principles and applications of mult-scale materials modelling - Covers themes such as dislocation behaviour and plasticity and the modelling of structural materials - Examines the spectrum of scales in modelling methodologies, including electronic structure calculations, mesoscale and continuum modelling


Microstructural Design of Advanced Engineering Materials

Microstructural Design of Advanced Engineering Materials

Author: Dmitri A. Molodov

Publisher: John Wiley & Sons

Published: 2013-07-17

Total Pages: 524

ISBN-13: 3527652833

DOWNLOAD EBOOK

The choice of a material for a certain application is made taking into account its properties. If, for example one would like to produce a table, a hard material is needed to guarantee the stability of the product, but the material should not be too hard so that manufacturing is still as easy as possible - in this simple example wood might be the material of choice. When coming to more advanced applications the required properties are becoming more complex and the manufacturer`s desire is to tailor the properties of the material to fit the needs. To let this dream come true, insights into the microstructure of materials is crucial to finally control the properties of the materials because the microstructure determines its properties. Written by leading scientists in the field of microstructural design of engineering materials, this book focuses on the evolution and behavior of granular microstructures of various advanced materials during plastic deformation and treatment at elevated temperatures. These topics provide essential background and practical information for materials scientists, metallurgists and solid state physicists.