The Classification of the Finite Simple Groups, Number 3

The Classification of the Finite Simple Groups, Number 3

Author: Daniel Gorenstein

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 446

ISBN-13: 9780821803912

DOWNLOAD EBOOK

Examines the internal structure of the finite simple groups of Lie type, the finite alternating groups, and 26 sporadic finite simple groups, as well as their analogues. Emphasis is on the structure of local subgroups and their relationships with one another, rather than development of an abstract theory of simple groups. A foundation is laid for the development of specific properties of K-groups to be used in the inductive proof of the classification theorem. Highlights include statements and proofs of the Breol-Tits and Curtis-Tits theorems, and material on centralizers of semisimple involutions in groups of Lie type. For graduate students and research mathematicians. Annotation copyrighted by Book News, Inc., Portland, OR


The Finite Simple Groups

The Finite Simple Groups

Author: Robert Wilson

Publisher: Springer Science & Business Media

Published: 2009-12-14

Total Pages: 310

ISBN-13: 1848009879

DOWNLOAD EBOOK

Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].


The Classification of Finite Simple Groups

The Classification of Finite Simple Groups

Author: Michael Aschbacher

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 362

ISBN-13: 0821853368

DOWNLOAD EBOOK

Provides an outline and modern overview of the classification of the finite simple groups. It primarily covers the 'even case', where the main groups arising are Lie-type (matrix) groups over a field of characteristic 2. The book thus completes a project begun by Daniel Gorenstein's 1983 book, which outlined the classification of groups of 'noncharacteristic 2 type'.


Finite Simple Groups: Thirty Years of the Atlas and Beyond

Finite Simple Groups: Thirty Years of the Atlas and Beyond

Author: Manjul Bhargava

Publisher: American Mathematical Soc.

Published: 2017-07-24

Total Pages: 242

ISBN-13: 1470436787

DOWNLOAD EBOOK

Classification of Finite Simple Groups, one of the most monumental accomplishments of modern mathematics, was announced in 1983 with the proof completed in 2004. Since then, it has opened up a new and powerful strategy to approach and resolve many previously inaccessible problems in group theory, number theory, combinatorics, coding theory, algebraic geometry, and other areas of mathematics. This strategy crucially utilizes various information about finite simple groups, part of which is catalogued in the Atlas of Finite Groups (John H. Conway et al.), and in An Atlas of Brauer Characters (Christoph Jansen et al.). It is impossible to overestimate the roles of the Atlases and the related computer algebra systems in the everyday life of researchers in many areas of contemporary mathematics. The main objective of the conference was to discuss numerous applications of the Atlases and to explore recent developments and future directions of research, with focus on the interaction between computation and theory and applications to number theory and algebraic geometry. The papers in this volume are based on talks given at the conference. They present a comprehensive survey on current research in all of these fields.


Finite Simple Groups

Finite Simple Groups

Author: Daniel Gorenstein

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 339

ISBN-13: 1468484974

DOWNLOAD EBOOK

In February 1981, the classification of the finite simple groups (Dl)* was completed,t. * representing one of the most remarkable achievements in the history or mathematics. Involving the combined efforts of several hundred mathematicians from around the world over a period of 30 years, the full proof covered something between 5,000 and 10,000 journal pages, spread over 300 to 500 individual papers. The single result that, more than any other, opened up the field and foreshadowed the vastness of the full classification proof was the celebrated theorem of Walter Feit and John Thompson in 1962, which stated that every finite group of odd order (D2) is solvable (D3)-a statement expressi ble in a single line, yet its proof required a full 255-page issue of the Pacific 10urnal of Mathematics [93]. Soon thereafter, in 1965, came the first new sporadic simple group in over 100 years, the Zvonimir Janko group 1 , to further stimulate the 1 'To make the book as self-contained as possible. we are including definitions of various terms as they occur in the text. However. in order not to disrupt the continuity of the discussion. we have placed them at the end of the Introduction. We denote these definitions by (DI). (D2), (D3). etc.


Theory of Finite Simple Groups

Theory of Finite Simple Groups

Author: Gerhard Michler

Publisher: Cambridge University Press

Published: 2006-09-21

Total Pages: 638

ISBN-13: 0521866251

DOWNLOAD EBOOK

The first representation theoretic and algorithmic approach to the theory of abstract finite simple groups.


Character Theory of Finite Groups

Character Theory of Finite Groups

Author: I. Martin Isaacs

Publisher: American Mathematical Soc.

Published: 2006-11-21

Total Pages: 322

ISBN-13: 0821842293

DOWNLOAD EBOOK

Character theory is a powerful tool for understanding finite groups. In particular, the theory has been a key ingredient in the classification of finite simple groups. Characters are also of interest in their own right, and their properties are closely related to properties of the structure of the underlying group. The book begins by developing the module theory of complex group algebras. After the module-theoretic foundations are laid in the first chapter, the focus is primarily on characters. This enhances the accessibility of the material for students, which was a major consideration in the writing. Also with students in mind, a large number of problems are included, many of them quite challenging. In addition to the development of the basic theory (using a cleaner notation than previously), a number of more specialized topics are covered with accessible presentations. These include projective representations, the basics of the Schur index, irreducible character degrees and group structure, complex linear groups, exceptional characters, and a fairly extensive introduction to blocks and Brauer characters. This is a corrected reprint of the original 1976 version, later reprinted by Dover. Since 1976 it has become the standard reference for character theory, appearing in the bibliography of almost every research paper in the subject. It is largely self-contained, requiring of the reader only the most basic facts of linear algebra, group theory, Galois theory and ring and module theory.


Finite Group Theory

Finite Group Theory

Author: M. Aschbacher

Publisher: Cambridge University Press

Published: 2000-06-26

Total Pages: 320

ISBN-13: 9780521786751

DOWNLOAD EBOOK

During the last 40 years the theory of finite groups has developed dramatically. The finite simple groups have been classified and are becoming better understood. Tools exist to reduce many questions about arbitrary finite groups to similar questions about simple groups. Since the classification there have been numerous applications of this theory in other branches of mathematics. Finite Group Theory develops the foundations of the theory of finite groups. It can serve as a text for a course on finite groups for students already exposed to a first course in algebra. It could supply the background necessary to begin reading journal articles in the field. For specialists it also provides a reference on the foundations of the subject. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises.


Structure Theory for Canonical Classes of Finite Groups

Structure Theory for Canonical Classes of Finite Groups

Author: Wenbin Guo

Publisher: Springer

Published: 2015-04-23

Total Pages: 369

ISBN-13: 3662457474

DOWNLOAD EBOOK

This book offers a systematic introduction to recent achievements and development in research on the structure of finite non-simple groups, the theory of classes of groups and their applications. In particular, the related systematic theories are considered and some new approaches and research methods are described – e.g., the F-hypercenter of groups, X-permutable subgroups, subgroup functors, generalized supplementary subgroups, quasi-F-group, and F-cohypercenter for Fitting classes. At the end of each chapter, we provide relevant supplementary information and introduce readers to selected open problems.


Representation Theory of Finite Groups

Representation Theory of Finite Groups

Author: Benjamin Steinberg

Publisher: Springer Science & Business Media

Published: 2011-10-23

Total Pages: 166

ISBN-13: 1461407761

DOWNLOAD EBOOK

This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.